【难点解析】2022年北京市密云县中考数学历年高频真题专项攻克 B卷(含答案详解)
展开这是一份【难点解析】2022年北京市密云县中考数学历年高频真题专项攻克 B卷(含答案详解),共20页。试卷主要包含了下列式中,与是同类二次根式的是,在平面直角坐标系xOy中,点A,有下列说法等内容,欢迎下载使用。
2022年北京市密云县中考数学历年高频真题专项攻克 B卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、深圳湾“春笋”大楼的顶部如图所示,则该几何体的主视图是( )
A. B. C. D.
2、甲、乙两地相距s千来,汽车从甲地匀速行驶到乙地,行驶的时间t(小时)关于行驶速度v(千米时)的函数图像是( )
A. B.
C. D.
3、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )
A. B.133 C.200 D.400
4、将抛物线y=2x2向下平移3个单位后的新抛物线解析式为( )
A.y=2(x﹣3)2 B.y=2(x+3)2 C.y=2x2﹣3 D.y=2x2+3
5、为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》、《新中国史》、《改革开放史》、《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为( )
A. B. C. D.1
6、下列式中,与是同类二次根式的是( )
A. B. C. D.
7、为保护人民群众生命安全,减少交通事故,自2020年7月1日起,我市市民骑车出行必须严格遵守“一盔一带”规定,某头盔经销商经过统计发现:某品牌头盔从5月份到7月份销售量的月增长率相同,若5月份销售200个,7月份销售288个,设月增长率为x则可列出方程( )
A.200(+x)=288 B.200(1+2x)=288
C.200(1+x)²=288 D.200(1+x²)=288
8、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )
A.轴 B.轴
C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)
9、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1 B.2 C.3 D.4
10、若,则的值是( )
A. B.0 C.1 D.2022
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、长方形纸片ABCD,点E、F分别在边AB、AD上,连接EF,将沿EF翻折,得到,连接CE,将翻折,得到,点恰好落在线段上,若,则__________°.
2、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.
3、如图,在平面直角坐标系中,二次函数 y=x2﹣2x+c 的图象与 x 轴交于 A、C 两点,与 y轴交于点 B(0,﹣3),若 P 是 x 轴上一动点,点 D(0,1)在 y 轴上,连接 PD,则 C 点的坐标是_____,PD+PC 的最小值是______.
4、已知x为不等式组的解,则的值为______.
5、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:FM⊥EH.
2、二次函数的图象与y轴交于点A,将点A向右平移4个单位长度,得到点B,点B在二次函数的图象上.
(1)求点B的坐标(用含的代数式表示);
(2)二次函数的对称轴是直线 ;
(3)已知点(,),(,),(,)在二次函数的图象上.若,比较,,的大小,并说明理由.
3、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,F为AB延长线上一点,连接CF,DF.
(1)若OE=3,BE=2,求CD的长;
(2)若CF与⊙O相切,求证DF与⊙O相切.
4、计算:(3﹣2)×+(﹣)2.
5、解分式方程:.
-参考答案-
一、单选题
1、A
【分析】
根据简单几何体的三视图的意义,得出从正面看所得到的图形即可.
【详解】
解:从正面看深圳湾“春笋”大楼所得到的图形如下:
故选:A.
【点睛】
本题考查简单几何体的三视图,理解视图的意义,掌握简单几何体三视图的画法是正确解答的关键.
2、B
【分析】
直接根据题意得出函数关系式,进而得出函数图象.
【详解】
解:由题意可得:t=,是反比例函数,
故只有选项B符合题意.
故选:B.
【点睛】
此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.
3、C
【分析】
设火车的车长是x米,根据经过一条长400m的隧道需要30秒的时间,可求火车速度,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可.
【详解】
解:设火车的长度是x米,根据题意得出:=,
解得:x=200,
答:火车的长为200米;
故选择C.
【点睛】
本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.
4、C
【分析】
根据“上加下减”的原则进行解答即可.
【详解】
解:将抛物线y=2x2向下平移3个单位后的新抛物线解析式为:y=2x2-3.
故选:C.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.
5、A
【分析】
直接根据概率公式求解即可.
【详解】
解:由题意得,他恰好选到《新中国史》这本书的概率为,
故选:A.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
6、A
【分析】
先根据二次根式的性质化成最简二次根式,再看看被开方数是否相同即可.
【详解】
解:A、,即化成最简二次根式后被开方数相同(都是5),所以是同类二次根式,故本选项符合题意;
B、最简二次根式和的被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
C、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
D、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
故选:A.
【点睛】
本题考查了二次根式的性质与化简和同类二次根式的定义,能熟记同类二次根式的定义是解此题的关键.
7、C
【分析】
设月增长率为x,根据等量关系用增长率表示7月份的销售量与销售288相等,可列出方程200(1+x)²=288即可.
【详解】
解:设月增长率为x,则可列出方程200(1+x)²=288.
故选C.
【点睛】
本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系列方程是解题关键.
8、C
【分析】
利用成轴对称的两个点的坐标的特征,即可解题.
【详解】
根据A点和B点的纵坐标相等,即可知它们的对称轴为.
故选:C.
【点睛】
本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.
9、A
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
10、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
二、填空题
1、61
【分析】
由翻折得到,根据,得到,利用求出答案.
【详解】
解:由翻折得,,
∵,
∴,
∵
∴,
故答案为:61.
【点睛】
此题考查了翻折的性质,角度的计算,正确掌握翻折的性质是解题的关键.
2、##
【分析】
设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.
【详解】
解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,
设去年甲、乙、丙三种水果的种植面积分别为:
去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,
设去年甲、乙、丙三种水果的平均亩产量分别为:
则今年甲品种水果的平均亩产量为:
乙品种水果的平均亩产量为: 丙品种的平均亩产量为
设今年的种植面积分别为:
甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,
①,②,
解得:
又丙品种水果增加的产量占今年水果总产量的,
解得:
所以三种水果去年的种植总面积与今年的种植总面积之比为:
故答案为:
【点睛】
本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.
3、(3,0) 4
【分析】
过点P作PJ⊥BC于J,过点D作DH⊥BC于H.根据,求出的最小值即可解决问题.
【详解】
解:过点P作PJ⊥BC于J,过点D作DH⊥BC于H.
∵二次函数y=x2﹣2x+c的图象与y轴交于点B(0,﹣3),
∴c=﹣3,
∴二次函数的解析式为y=x2﹣2x﹣3,令y=0,x2﹣2x﹣3=0,
解得x=﹣1或3,
∴A(﹣1,0),C(3,0),
∴OB=OC=3,
∵∠BOC=90°,
∴∠OBC=∠OCB=45°,
∵D(0,1),
∴OD=1,BD=1-(-3)=4,
∵DH⊥BC,
∴∠DHB=90°,
设,则,
∵,
∴,
∴,
∴,
∵PJ⊥CB,
∴,
∵∠PCJ=45°,
∴∠CPJ=90°-∠PCJ=45°,
∴PJ=JC,
根据勾股定理
∴,
∴,
∵,
∴,
∴PD+PJ的最小值为,
∴的最小值为4.
故答案为: (3,0),4.
【点睛】
本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,勾股定理,垂线段最短等知识,解题的关键是学会用转化的思想思考问题.
4、2
【分析】
解不等式组得到x的范围,再根据绝对值的性质化简.
【详解】
解:,
解不等式①得:,
解不等式②得:,
∴不等式组的解集为:,
∴
=
=
=2
故答案为:2.
【点睛】
本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x的范围.
5、11或12
【分析】
根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.
【详解】
解:假设共有学生x人,根据题意得出:
,
解得:10<x≤12.
因为x是正整数,所以符合条件的x的值是11或12,
故答案为:11或12.
【点睛】
此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.
三、解答题
1、见解析
【分析】
根据等腰三角形的性质可求∠B=∠C,根据ASA可证△BEF≌△CFH,根据全等三角形的性质可求EF=FH,再根据等腰三角形的性质可证FM⊥EH.
【详解】
解:证明:∵AB=AC,
∴∠B=∠C,
在△BEF与△CFH中,
,
∴△BEF≌△CFH(ASA),
∴EF=FH,
∵M是EH的中点,
∴FM⊥EH.
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形的性质,关键是根据ASA证明△BEF≌△CFH.
2、(1)B(4,);(2);(3),见解析
【分析】
(1)根据题意,令,即可求得的坐标,根据平移的性质即可求得点的坐标;
(2)根据题意关于对称轴对称,进而根据的坐标即可求得对称轴;
(3)根据(2)可知对称轴为,进而计算点与对称轴的距离,根据抛物线开口朝下,则点离对称轴越远则函数值越小,据此求解即可
【详解】
解:(1)∵令,
∴,
∴点A的坐标为(0,),
∵将点A向右平移4个单位长度,得到点B,
∴点B的坐标为(4,).
(2) A的坐标为(0,),点B的坐标为(4,)
点都在在二次函数的图象上.即关于对称轴对称
对称轴为
(3)∵对称轴是直线,,
∴点(,),(,)在对称轴的左侧,
点(,)在对称轴的右侧,
∵,
∴,
∴,
,
∵,
∴.
【点睛】
本题考查了平移的性质,二次函数的对称性,二次函数的性质,熟练掌握二次函数的性质是解题的关键.
3、(1)8;(2)见解析
【分析】
(1)连接OC,利用勾股定理求解CE=4,再利用垂径定理可得答案;
(2)证明 再证明 可得 从而可得结论.
【详解】
(1)解:连接OC,
∵CD⊥AB,
∴CE=DE,
∴OC=OB=OE+BE=3+2=5,
在Rt△OCE中,∠OEC=90°,由勾股定理得:CE2=OC2-OE2,
∴CE2=52-32,
∴CE=4,
∴CD=2CE=8.
(2)解:连接OD,
∵CF与⊙O相切,
∴∠OCF=90°,
∵CE=DE,CD⊥AB,
∴CF=DF,
又OF=OF,OC=OD,
∴△OCF≌△ODF,
∴∠ODF=∠OCF=90°,即OD⊥DF.
又D在⊙O上,
∴DF与⊙O相切.
【点睛】
本题考查的是圆的基本性质,垂径定理的应用,切线的性质与判定,证明△OCF≌△ODF得到∠ODF=∠OCF=90°是解本题的关键.
4、﹣1
【分析】
首先计算二次根式的乘法,利用完全平方公式计算,最后合并同类二次根式.
【详解】
解:原式=3﹣6+(2+3﹣2),
=3﹣6+5﹣2,
=﹣1.
【点睛】
本题主要考查了二次根式的乘法,完全平方公式,合并同类项,熟练运算法则和完全平方公式是解决本题的关键.
5、
【分析】
先去分母,去括号,然后移项合并同类项,系数化为1,最后进行检验.
【详解】
解:
去分母去括号得:
解得:
检验:当时,
∴分式方程的解为.
【点睛】
本题考查了解分式方程.解题的关键与难点在于将分式方程转化成整式方程.
相关试卷
这是一份【高频真题解析】2022年安徽省淮北市中考数学历年高频真题专项攻克 B卷(含详解),共20页。
这是一份【历年真题】中考数学历年高频真题专项攻克 B卷(含答案详解),共25页。试卷主要包含了下列命题正确的是等内容,欢迎下载使用。
这是一份[中考专题]2022年北京市顺义区中考数学历年高频真题专项攻克 B卷(含答案及详解),共24页。试卷主要包含了下列计算正确的是,下列命题中,真命题是等内容,欢迎下载使用。