【历年真题】2022年重庆市九龙坡区中考数学模拟真题练习 卷(Ⅱ)(含答案及解析)
展开
这是一份【历年真题】2022年重庆市九龙坡区中考数学模拟真题练习 卷(Ⅱ)(含答案及解析),共23页。试卷主要包含了下列二次根式中,最简二次根式是,有理数等内容,欢迎下载使用。
2022年重庆市九龙坡区中考数学模拟真题练习 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题,是真命题的是( )A.两条直线被第三条直线所截,内错角相等B.邻补角的角平分线互相垂直C.相等的角是对顶角D.若,,则2、如图所示,,,,,则等于( )A. B. C. D.3、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )A.50° B.65° C.75° D.80°4、下列二次根式中,最简二次根式是( )A. B. C. D.5、如图所示,动点从第一个数的位置出发,每次跳动一个单位长度,第一次跳动一个单位长度到达数的位置,第二次跳动一个单位长度到达数的位置,第三次跳动一个单位长度到达数的位置,第四次跳动一个单位长度到达数的位置,……,依此规律跳动下去,点从跳动次到达的位置,点从跳动次到达的位置,……,点、、……在一条直线上,则点从跳动( )次可到达的位置.A. B. C. D.6、下列格点三角形中,与右侧已知格点相似的是( )A. B.C. D.7、根据表中的信息判断,下列语句中正确的是( )1515.115.215.315.415.515.615.715.815.916225228.01231.04234.09237.16240.25243.36246.49249.64252.81256A.B.235的算术平方根比15.3小C.只有3个正整数满足D.根据表中数据的变化趋势,可以推断出将比256增大3.198、有理数、、、在数轴上对应的点的位置如图所示,则下列结论错误的是( )A. B. C. D.9、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是( )A.雷 B.锋 C.精 D.神10、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、请写出一个过第二象限且与轴交于点的直线表达式___.2、若a<<a+1,则整数a=___.3、如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行.反比例函数y=(k≠0)的图象,与大正方形的一边交于点A(,4),且经过小正方形的顶点B.求图中阴影部分的面积为 _____.4、如图,在中,,,,为的角平分线.M为边上一动点,N为线段上一动点,连接、、,当取得最小值时,的面积为______.5、如图是一个运算程序的示意图,若开始输入x的值为50,我们发现第1次输出的结果为25,第2次输出的结果为32,……则第2022次输出的结果为_________.三、解答题(5小题,每小题10分,共计50分)1、计算:.2、在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6).(1)在点E(0,0),F(2,5),G(-1,-1),H(-3,5)中, 的“关联点”在函数y=2x+1的图象上;(2)如果一次函数y=x+3图象上点M的“关联点”是N(m,2),求点M的坐标;(3)如果点P在函数y=-x2+4(-2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是-4<y′≤4,求实数a的取值范围.3、已知:二次函数y=x2﹣1.(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象.4、如图,数轴上A和B.(1)点A表示 ,点B表示 .(2)点C表示最小的正整数,点D表示的倒数,点E表示,在数轴上描出点C、D、E.(3)将该数轴上点A、B、C、D、E表示的数用“<”连起来: .5、如图,点、分别为的边、的中点,,则______. -参考答案-一、单选题1、B【分析】利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项.【详解】解:A、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;、邻补角的角平分线互相垂直,正确,是真命题,符合题意;、相等的角不一定是对顶角,故错误,是假命题,不符合题意;、平面内,若,,则,故原命题错误,是假命题,不符合题意,故选:.【点睛】考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大.2、C【分析】根据“SSS”证明△AOC≌△BOD即可求解.【详解】解:在△AOC和△BOD中,∴△AOC≌△BOD,∴∠C=∠D,∵,∴=30°,故选C.【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.3、B【分析】根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.【详解】解:如图,根据题意得:BG∥AF,∴∠FAE=∠BED=50°,∵AG为折痕,∴ .故选:B【点睛】本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.4、D【分析】根据最简二次根式的条件分别进行判断.【详解】解:A.,不是最简二次根式,则A选项不符合题意;B.,不是最简二次根式,则B选项不符合题意;C.,不是最简二次根式,则C选项不符合题意;D.是最简二次根式,则D选项符合题意;故选:D.【点睛】题考查了最简二次根式:掌握最简二次根式的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式)是解决此类问题的关键.5、B【分析】由题意可得:跳动个单位长度到 从到再跳动个单位长度,归纳可得:从上一个点跳动到下一个点跳动的单位长度是连续的三个正整数的和,从而可得答案.【详解】解:由题意可得:跳动个单位长度到 从到再跳动个单位长度, 归纳可得:结合所以点从跳动到达跳动了: 个单位长度.故选B【点睛】本题考查的是数字规律的探究,有理数的加法运算,掌握“从具体到一般的探究方法及运用发现的规律解题”是关键.6、A【分析】根据题中利用方格点求出的三边长,可确定为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.【详解】解:的三边长分别为:,,,∵,∴为直角三角形,B,C选项不符合题意,排除;A选项中三边长度分别为:2,4,,∴,A选项符合题意,D选项中三边长度分别为:,,,∴,故选:A.【点睛】题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.7、C【分析】根据算术平方根的定义及表格中信息逐项分析即可.【详解】A.根据表格中的信息知:,,故选项不正确;B.根据表格中的信息知:,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:,正整数或242或243,只有3个正整数满足,故选项正确;D.根据表格中的信息无法得知的值,不能推断出将比256增大3.19,故选项不正确.故选:C.【点睛】本题是图表信息题,考查了算术平方根,关键是正确利用表中信息.8、C【分析】根据有理数a,b,c,d在数轴上对应的点的位置,逐个进行判断即可.【详解】解:由有理数a,b,c,d在数轴上对应的点的位置可得,-4<d<-3<-1<c<0<1<b<2<3<a<4,∴,,,,故选:C.【点睛】本题考查数轴表示数的意义,根据点在数轴上的位置,确定该数的符号和绝对值是正确判断的前提.9、D【分析】根据正方体的表面展开图的特征,判断相对的面即可.【详解】解:由正方体的表面展开图的特征可知:“学”的对面是“神”,故选:D.【点睛】本题考查了正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键.10、D【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,故有,,进而可得B点坐标.【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D ∵∴在和中∴∴∴B点坐标为故选D.【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.二、填空题1、(答案不唯一)【分析】因为直线过第二象限,与y轴交于点(0,-3),则b=-3.写一个满足题意的直线表达式即可【详解】解:直线过第二象限,且与轴交于点,,,直线表达式为:.故答案为:(答案不唯一).【点睛】本题考查了一次函数的图像和性质,解题的关键是熟记一次函数的图像和性质.2、3【分析】估算出的取值范围即可求出a的值.【详解】解:∵,∴3<<4,∵a<<a+1,∴a=3,故答案为:3.【点睛】此题主要考查了估算无理数的大小,在确定形如(a≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.3、40【分析】根据待定系数法求出即可得到反比例函数的解析式;利用反比例函数系数的几何意义求出小正方形的面积,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积,根据图中阴影部分的面积大正方形的面积小正方形的面积即可求出结果.【详解】解:反比例函数的图象经过点,,反比例函数的解析式为;小正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,设点的坐标为,反比例函数的图象经过点,,,小正方形的面积为,大正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,且,大正方形在第一象限的顶点坐标为,大正方形的面积为,图中阴影部分的面积大正方形的面积小正方形的面积.【点睛】本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数的几何意义,正方形的性质,熟练掌握反比例函数系数的几何意义是解决问题的关键.4、【分析】利用点M关于AC的对称点确定N点,当、、三点共线且时,的长取得最小值,再利用三角形的面积公式求出,在利用勾股定理求后即可求出的面积.【详解】∵为的角平分线,将沿翻折,∴的对应点一定在边上.∴∴当、、三点共线且时,的长取得最小值∵在中,,,∴∵∴∴在中,∴.【点睛】本题考查了最短路径问题以及勾股定理,灵活运用勾股定理是解题的关键.5、2【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【详解】解:由设计的程序知,依次输出的结果是25,32,16,8,4,2,1,8,4,2,,发现从第4个数开始,以8,4,2,1循环出现,则,,故第2022次输出的结果是2.故答案为:2.【点睛】本题考查数字的变化类,解题的关键是明确题意,发现数字的变化特点,求出相应的输出结果.三、解答题1、【详解】解:原式.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.2、(1)F、H(2)点M(-5,-2)(3)【分析】(1)点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y=2x+1,看是否在函数图象上,即可求解;(2)当m≥0时,点M(m,2),则2=m+3;当m<0时,点M(m,-2),则﹣2=m+3,解方程即可求解;(3)如图为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y'的取值范围是-4<y'≤4,而-2<x≤a,函数图象只需要找到最大值(直线y=4)与最小值(直线y=-4)直线x=a从大于等于0开始运动,直到与y=-4有交点结束.都符合要求-4<y'≤4,只要求出关键点即可求解.(1)解:由题意新定义知:点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y=2x+1,得到:F(2,5)和H(-3,-5)在函数y=2x+1图象上;(2)解:当m≥0时,点M(m,2),则2=m+3,解得:m=-1(舍去);当m<0时,点M(m,-2),-2=m+3,解得:m=-5,∴点M(-5,-2);(3)解:如下图所示为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y'的取值范围是-4<y'≤4,而-2<x≤a,函数图象只需要找到最大值(直线y=4)与最小值(直线y=-4)直线x=a从大于等于0开始运动,直到与y=-4有交点结束,都符合要求,∴-4=-a2+4,解得:(舍去负值),观察图象可知满足条件的a的取值范围为:.【点睛】本题考查二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,属于创新题目,读懂题意是解决本类题的关键.3、(1)抛物线的开口方向向上,对称轴为y轴,顶点坐标为(0,﹣1).(2)图像见解析.【分析】(1)根据二次函数y=a(x-h)2+k,当a>0时开口向上;顶点式可直接求得其顶点坐标为(h,k)及对称轴x=h;(2)可分别求得抛物线顶点坐标以及抛物线与x轴、y轴的交点坐标,利用描点法可画出函数图象.(1)解:(1)∵二次函数y=x2﹣1,∴抛物线的开口方向向上,顶点坐标为(0,﹣1),对称轴为y轴;(2)解:在y=x2﹣1中,令y=0可得x2﹣1=0.解得x=﹣1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);令x=0可得y=﹣1,所以抛物线与y轴的交点坐标为(0,-1);又∵顶点坐标为(0,﹣1),对称轴为y轴,再求出关于对称轴对称的两个点,将上述点列表如下:x-2-1012y=x2﹣130-103描点可画出其图象如图所示:【点睛】本题考察了二次函数的开口方向、对称轴以及顶点坐标.以及二次函数抛物线的画法.解题的关键是把二次函数的一般式化为顶点式.描点画图的时候找到关键的几个点,如:与x轴的交点与y轴的交点以及顶点的坐标.4、(1),(2)见解析(3)1<<<<【分析】(1)根据数轴直接写出A、B所表示的数即可;(2)根据最小的正整数是1,的倒数是,然后据此在数轴上找到C、D、E即可;(3)将A、B、C、D、E表示的数从小到大排列,再用 “<”连接即可.(1)解:由数轴可知A、B表示的数分别是:,.故答案为:,.(2)解:∵最小的正整数是1,的倒数是∴C表示的数是1,D表示的数是,∴如图:数轴上的点C、D、E即为所求.(3)解:根据(2)的数轴可知,将点A、B、C、D、E表示的数用“<”连接如下:1<<<<.【点睛】本题主要考查了在数轴上表示数、倒数、最小的正整数、倒数以及利用数轴比较有理数的大小,在数轴上正确表示有理数成为解答本题的关键.5、6【分析】根据三角形中位线定理解答即可.【详解】解:∵D,E分别是△ABC的边AB,BC的中点,∴DE是△ABC的中位线,∴AC=2DE=6,故答案为:6.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
相关试卷
这是一份【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解),共21页。试卷主要包含了如果,且,那么的值一定是 .,下面几何体是棱柱的是等内容,欢迎下载使用。
这是一份【历年真题】2022年最新中考数学模拟真题练习 卷(Ⅱ)(精选),共26页。
这是一份【历年真题】2022年重庆市九龙坡区中考数学模拟真题练习 卷(Ⅱ)(精选),共25页。试卷主要包含了若,则代数式的值为,已知点,如图,是的外接圆,,则的度数是等内容,欢迎下载使用。