【历年真题】2022年辽宁省营口市中考数学历年真题练习 (B)卷(含答案及详解)
展开2022年辽宁省营口市中考数学历年真题练习 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,五边形中,,CP,DP分别平分,,则( )
A.60° B.72° C.70° D.78°
2、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:①;②;③抛物线与轴的另一个交点的坐标为;④方程有两个不相等的实数根.其中正确的个数为( )
A.个 B.个 C.个 D.个
3、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为( )
A. B. C. D.
4、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
5、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是( )
A.63° B.58° C.54° D.56°
6、如图,DE是的中位线,若,则BC的长为( )
A.8 B.7 C.6 D.7.5
7、在以下实数中:-0.2020020002…,,,,,,无理数的个数是( )
A.2个 B.3个 C.4个 D.5个
8、若x=1是关于x的一元二次方程x2+mx﹣3=0的一个根,则m的值是( )
A.﹣2 B.﹣1 C.1 D.2
9、下列判断错误的是( )
A.若,则 B.若,则
C.若,则 D.若,则
10、下列说法中,正确的有( )
①射线AB和射线BA是同一条射线;②若,则点B为线段AC的中点;③连接A、B两点,使线段AB过点C;④两点的所有连线中,线段最短.
A.0个 B.1个 C.2个 D.3个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、等腰三角形ABC中,项角A为50°,点D在以点A为圆心,BC的长为半径的圆上,若BD=BA,则∠DBC的度数为_____.
2、已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为______.
3、用13米长的篱笆围成一个面积为20平方米的长方形场地,其中一边靠墙,若设垂直于墙的一边为x,则可列出的方程是 ___;
4、已知(2x﹣4)2+|x+2y﹣8|=0,则(x﹣y)2021=___.
5、如图,已知,,那么_______.(用度、分、秒表示的大小)
三、解答题(5小题,每小题10分,共计50分)
1、某店以一共500元进价购得甲、乙两件商品,然后将甲、乙两件商品分别按和的利润标定出售价.
(1)如果按上述进价和售价进行交易,那么该店买卖这两件商品能否盈利260元?为什么?
(2)如果该店按原定售价八折促销,某顾客同时购买了甲、乙两种商品,实际付款584元,那么甲、乙两商品原进价各多少元?
2、如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),二次函数y=x2+bx﹣2的图象经过C点.
(1)求二次函数的解析式;
(2)若点P是抛物线的一个动点且在x轴的下方,则当点P运动至何处时,恰好使△PBC的面积等于△ABC的面积的两倍.
(3)若点Q是抛物线上的一个动点,则当点Q运动至何处时,恰好使∠QAC=45°?请你求出此时的Q点坐标.
3、在光明中学开展的读书月活动中,七一班数学兴趣小组调查了七年级部分学生平均每天读书的时间(单位:分钟),根据统计结果制成了下列不完整的频数直方图和扇形统计图.请结合图中信息回答下列问题:
(1)本次调查的学生人数为___________.
(2)补全频数直方图.
(3)根据以上调查,兴趣小组想制作倡议书发放给七年级平均每天读书的时间低于30分钟的学生,已知七年级一共有300名学生,请估计该兴趣小组需要制作多少份倡议书.并为读书的时间低于30分钟的学生同学提出一条合理建议.
4、已知,,OC平分∠AON.
(1)如图1,射线与射线OB均在∠MON的内部.
①若,∠MOA= °;
②若,直接写出∠MOA的度数(用含的式子表示);
(2)如图2,射线OA在∠MON的内部,射线OB在∠MON的外部.
①若,求∠MOA的度数(用含的式子表示);
②若在∠MOA的内部有一条射线OD,使得,直接写出∠MOD的度数.
5、为了解班级学生参加课后服务的学习效果,何老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)此次调查的总人数为________;
(2)扇形统计图中“不达标”对应的圆心角度数是________°;
(3)请将条形统计图补充完整;
(4)为了共同进步,何老师准备从被调查的A类和D类学生中各随机抽取一位同学进行“一帮一”互助学习.请用画树状图或列表的方法求出所选两位同学恰好是相同性别的概率.
-参考答案-
一、单选题
1、C
【分析】
根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得与的角度和,进一步求得的度数.
【详解】
解:五边形的内角和等于,,
,
、的平分线在五边形内相交于点,
,
.
故选:C.
【点睛】
本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.
2、C
【分析】
根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:①如图,开口向上,得,
,得,
抛物线与轴交于负半轴,即,
,
故①错误;
②如图,抛物线与轴有两个交点,则;
故②正确;
③由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,
故③正确;
④如图所示,当时,,
根的个数为与图象的交点个数,
有两个交点,即有两个根,
故④正确;
综上所述,正确的结论有3个.
故选:C.
【点睛】
主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
3、B
【分析】
设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案.
【详解】
解:设该分派站有x名快递员,则可列方程为:
7x+6=8x-1.
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.
4、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
5、C
【分析】
先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.
【详解】
解:∵∠A=33°,∠B=30°,
∴∠ACD=∠A+∠B=33°+30°=63°,
∵△ABC绕点C按逆时针方向旋转至△DEC,
∴△ABC≌△DEC,
∴∠ACB=∠DCE,
∴∠BCE=∠ACD,
∴∠BCE=63°,
∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.
故选:C.
【点睛】
本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.
6、A
【分析】
已知DE是的中位线,,根据中位线定理即可求得BC的长.
【详解】
是的中位线,,
,
故选:A.
【点睛】
此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.
7、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.
【详解】
解:无理数有-0.2020020002…,,,,共有4个.
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…,等有这样规律的数.解题的关键是理解无理数的定义.
8、D
【分析】
把x=1代入方程x2+mx-3=0,得出一个关于m的方程,解方程即可.
【详解】
解:把x=1代入方程x2+mx-3=0得:1+m-3=0,
解得:m=2.
故选:D.
【点睛】
本题考查了一元二次方程的解和解一元一次方程,关键是能根据题意得出一个关于m的方程.
9、D
【分析】
根据等式的性质解答.
【详解】
解:A. 若,则,故该项不符合题意;
B. 若,则,故该项不符合题意;
C. 若,则,故该项不符合题意;
D. 若,则(),故该项符合题意;
故选:D.
【点睛】
此题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.
10、B
【分析】
①射线有方向性,描述射线时的第1个字母表示它的端点,所以①不对.
②不明确A、B、C是否在同一条直线上.所以错误.
③不知道C是否在线段AB上,错误.
④两点之间线段最短,正确.
【详解】
①射线AB和射线BA的端点不同不是同一条射线.所以错误.
②若AB和BC为不在同一条直线的两条线段,B就不是线段AC的中点.所以错误.
③若C点不在线段AB两点的连线上,那么C点就无法过线段AB.所以错误.
④两点之间线段最短,所以正确.
故选:B.
【点睛】
本题考查了射线、线段中点的含义.解题的关键是根据两点之间线段最短,射线、线段的中点的定义,角平分线的定义对各小题分析判断即可得解.
二、填空题
1、15°或115°
【分析】
根据题意作出图形,根据等腰三角形的性质和三角形的内角和定理求得,,根据即可求得∠DBC的度数
【详解】
解:如图,等腰三角形ABC中,顶角为50°,点D在以点A为圆心,BC的长为半径的圆上,
,
BD=BA,
又
当在位置时,同理可得
故答案为:15°或115°
【点睛】
本题考查了圆的性质,三角形全等的性质与判定,三角形内角和定理,等腰三角形的定义,根据题意画出图形是解题的关键.
2、-3
【分析】
两个方程相加得出3x+3y=3a+9,根据已知条件x,y互为相反数知x+y=0,得出关于a的方程,解方程即可.
【详解】
解:两个方程相加得:3x+3y=3a+9,
∵x、y互为相反数,
∴x+y=0,
∴3x+3y=0,
∴3a+9=0,
解得:a=-3,
故答案为:-3.
【点睛】
本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于a的方程是解决问题的关键.
3、x(13-2x)=20
【分析】
若设垂直于墙的一边长为x米,则平行于墙的一边长为(13-2x)米,根据长方形场地的面积为20平方米,即可得出关于x的一元二次方程,此题得解.
【详解】
解:若设垂直于墙的一边长为x米,则平行于墙的一边长为(13-2x)米,
依题意得:x(13-2x)=20.
故答案为:x(13-2x)=20.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
4、-1
【分析】
由非负数的意义求出x、y的值,再代入计算即可.
【详解】
解:∵(2x-4)2+|x+2y-8|=0,
∴2x-4=0,x+2y-8=0,
解得,x=2,y=3,
∴(x-y)2021=(2-3)2021=(-1)2021=-1,
故答案为:-1.
【点睛】
本题考查非负数的意义,掌握绝对值、偶次幂的运算性质是解决问题的前提.
5、
【分析】
根据计算即可.
【详解】
解:,,
,
故答案为:.
【点睛】
本题考查了角的和差,以及度分秒的换算,正确掌握1°=,是解答本题的关键.
三、解答题
1、
(1)该店买卖这两件商品不可能盈利260元,原因见解析
(2)甲商品的原进价为300元,乙商品的原进价为200元
【分析】
(1)利用获得的总利润=两件商品的进价之和×50%,可求出两件商品均按50%的利润销售可获得的利润,由该值小于260即可得出结论;
(2)设甲商品的原进价为x元,则乙商品的原进价为(500-x)元,根据某顾客按八折购买共付款584元,即可得出关于x的一元一次方程,解之即可得出结论.
(1)
(元,,
该店买卖这两件商品不可能盈利260元.
(2)
设甲商品的原进价为元,则乙商品的原进价为元,
依题意得:,
解得:,
.
答:甲商品的原进价为300元,乙商品的原进价为200元.
【点睛】
本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
2、(1);(2)当点P运动至坐标为或时,恰好使△PBC的面积等于△ABC的面积的两倍; (3)或
【分析】
(1)如图,过作于 先证明 可得 再代入二次函数y=x2+bx﹣2中,再利用待定系数法求解即可;
(2)先求解 过作轴交于 再求解直线为: 设 则 再利用 再解方程即可;
(3)分两种情况讨论:如图,作关于的对称点 连接 作的角平分线 交于 交抛物线于 由 则再求解的解析式,再求解与抛物线的交点坐标即可,如图,同理可得:当平分时,射线与抛物线的交点满足 按同样的方法可得答案.
【详解】
解:(1)如图,过作于
则 而
而
二次函数y=x2+bx﹣2的图象经过C点,
解得:
二次函数的解析式为:
(2)
过作轴交于
设直线为
解得:
所以直线为:
设 则
整理得:
解得:
当时,
当时,
或
所以当点P运动至坐标为或时,恰好使△PBC的面积等于△ABC的面积的两倍.
(3)如图,作关于的对称点 连接 作的角平分线 交于 交抛物线于
由 则
平分
则
同理可得直线的解析式为:
解得:或(不合题意,舍去)
如图,同理可得:当平分时,射线与抛物线的交点满足
同理:
直线为:
解得:或(不合题意舍去)
【点睛】
本题考查的是利用待定系数法求解一次函数,二次函数关系式,全等三角形的性质与判定,等腰直角三角形的性质,一元二次方程的解法,清晰的分类讨论是解本题的关键.
3、
(1)60
(2)见解析
(3)30,开卷有益,要养成阅读的好习惯(答案不唯一)
【分析】
(1)平均每天读书的时间10—30分钟的人数除以所占的百分比,即可求解;
(2)用总人数乘以平均每天读书的时间30—50分钟所占的百分比,即可求解;
(3)用300乘以平均每天读书的时间10—30分钟所占的百分比,即可求解.
(1)
解:本次调查的学生人数为名;
(2)
解:平均每天读书的时间30—50分钟的人数为名,
补全频数直方图如下图:
(3)
解:份.
建议:开卷有益,要养成阅读的好习惯
【点睛】
本题主要考查了条形统计图和扇形统计图,能准确从统计图信息是解题的关键.
4、(1)①40;②;(2)①;②.
【分析】
(1)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;
②先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;
(2)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;
②先根据角的和差可得,从而可得,再根据即可得.
【详解】
解:(1)①,
,
平分,
,
,
,
故答案为:40;
②,
,
平分,
,
,
;
(2)①,
,
平分,
,
,
;
②如图,由(2)①已得:,,
,
,
,
.
【点睛】
本题考查了与角平分线有关的角度计算,熟练掌握角的运算是解题关键.
5、
(1)20人
(2)36
(3)见解析
(4)
【分析】
(1)由条形统计图中B类学生数及扇形统计图中B类学生的百分比即可求得参与调查的总人数;
(2)由扇形统计图可求得不达标的学生所占的百分比,它与360°的积即为所求的结果;
(3)现两种统计图及(1)中所求得的总人数,可分别求得C类、D类学生的人数,从而可求得这两类中未知的学生数,从而可补充完整条形统计图;
(4)记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表即可求得所有可能的结果数及所选两位同学恰好是相同性别的结果数,从而可求得概率.
(1)
由条形统计图知,B类学生共有6+4=10(人),由扇形统计图知,B类学生所占的百分比为50%,则参与调查的总人数为:(人)
故答案为:20人
(2)
由扇形统计图知,D类学生所占的百分比为:,则扇形统计图中“不达标”对应的圆心角度数是:360°×10%=36°
故答案为:36
(3)
C类学生总人数为:20×25%=5(人),则C类学生中女生人数为:(人)
D类学生总人数为:20×10%=2(人),则C类学生中男生人数为:(人)
补充完整的条形统计图如下:
(4)
记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表如下:
| 男1 | 女1 | 女2 |
男 | 男男1 | 男女1 | 男女2 |
女 | 女男1 | 女女1 | 女女2 |
则选取两位同学的所有可能结果数为6种,所选两位同学恰好是相同性别的结果数有3种,所以所选两位同学恰好是相同性别的概率为:
【点睛】
本题是统计图的综合,考查了条形统计图与扇形统计图,简单事件的概率,关键是读懂两个统计图并能从图中获取信息.
【历年真题】中考数学历年高频真题专项攻克 B卷(含答案详解): 这是一份【历年真题】中考数学历年高频真题专项攻克 B卷(含答案详解),共25页。试卷主要包含了下列命题正确的是等内容,欢迎下载使用。
【历年真题】2022年江苏省镇江市中考数学历年真题练习 (B)卷(含答案详解): 这是一份【历年真题】2022年江苏省镇江市中考数学历年真题练习 (B)卷(含答案详解),共25页。试卷主要包含了二次函数 y=ax2+bx+c,的相反数是,下列式中,与是同类二次根式的是等内容,欢迎下载使用。
【历年真题】2022年山东省青岛市中考数学历年真题练习 (B)卷(含详解): 这是一份【历年真题】2022年山东省青岛市中考数学历年真题练习 (B)卷(含详解),共23页。试卷主要包含了如图,是的外接圆,,则的度数是等内容,欢迎下载使用。