【历年真题】2022年辽宁省大石桥市中考数学历年真题定向练习 卷(Ⅰ)(含答案及解析)
展开
这是一份【历年真题】2022年辽宁省大石桥市中考数学历年真题定向练习 卷(Ⅰ)(含答案及解析),共20页。
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,表示绝对值相等的数的两个点是( )
A.点C与点BB.点C与点DC.点A与点BD.点A与点D
2、下列各数中,是无理数的是( )
A.0B.C.D.3.1415926
3、将正方体的表面分别标上数字1,2,3,并在它们的对面分别标上一些负数,使它的任意两个相对面的数字之和为0,将这个正方体沿某些棱剪开,得到以下的图形,这些图形中,其中的x对应的数字是﹣3的是( )
A.B.
C.D.
4、根据以下程序,当输入时,输出结果为( )
A.B.C.D.
5、若关于的方程有两个实数根,则的取值范围是( )
A.B.C.D.
6、如图,与位似,点O是位似中心,若,,则( )
A.9B.12C.16D.36
7、如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形.若矩形ABCD为黄金矩形,宽AD=﹣1,则长AB为( )
A.1B.﹣1C.2D.﹣2
8、如图,与交于点,与互余,,则的度数为( )
A.B.C.D.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
9、将一长方形纸条按如图所示折叠,,则( )
A.55°B.70°C.110°D.60°
10、如图,中,是的中位线,连接,相交于点,若,则为( )
A.3B.4C.9D.12
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、计算:6423=_____.
2、如图,三角形纸片ABC中,点D、E、F分别在边AB、AC、BC上,.将这张纸片沿直线DE翻折,点A与点F重合.若∠EFC比∠DFB大38°,则∠DFB=__________°.
3、A、B、C三个城市的位置如右图所示,城市C在城市A的南偏东60°方向,且∠BAC=155°,则城市B在城市A的______方向.
4、如图所示,在平面直角坐标系中A(-2,4),B(-4,2).在y轴找一点P,使得△ABP的周长最小,则△ABP周长最小值为_______
5、若关于x的二次三项式x2-2(k+1)x+4是完全平方式,则k=____.
三、解答题(5小题,每小题10分,共计50分)
1、列方程或方程组解应用题:
某校积极推进垃圾分类工作,拟采购30L和120L两种型号垃圾桶用于垃圾投放.已知采购5个30L垃圾桶和9个120L垃圾桶共需付费1000元;采购10个30L垃圾桶和5个120L垃圾桶共需付费700元,求30L垃圾桶和120L垃圾桶的单价.
2、观察并找出规律:从2开始,连续的偶数相加,它们的和的情况如下表:
(1)当m=8时,和S的等式为_________
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)按此规律计算:
①2+4+6+…+200值;
②82+84+86+…+204值.
3、如图,在中,,D是延长线上的一点,E是上的一点.连接.如果.求证:.
4、如图,已知,.
(1)请用尺规作图法,作的垂直平分线,垂足为,交于.(不要求写作法,保留作图痕迹)
(2)若线段,,求线段的长.
5、如图所示的平面图形分别是由哪种几何体展开形成的?
-参考答案-
一、单选题
1、D
【分析】
根据数轴可以把A、B、C、D四个点表示的数写出来,然后根据写出的数即可得到那两个数的绝对值相等,从而可以得到问题的答案.
【详解】
解:由数轴可得,点A、B、C、D在数轴上对应的数依次是:−3,2,-1,3,
则|−3|=|3|,
故点A与点D表示的数的绝对值相等,
故选:D.
【点睛】
本题考查数轴,解题的关键是利用数形结合的思想找出所求问题需要的条件.
2、B
【分析】
无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.0是整数,属于有理数,故本选项不合题意;
B.是无理数,故本选项符合题意;
C.是分数,属于有理数,故本选项不合题意;
D.3.1415926是有限小数,属于有理数,故本选项不合题意;
故选:B.
【点睛】
本题考查了无理数,掌握无理数的含义是解题的关键.
3、A
【分析】
根据正方体的表面展开图,相对的面之间一定相隔一个正方形,求出各选项的x的值即可.
【详解】
解: A.x=-3
B.x=-2
C.x=-2
D.x=-2
故答案为:A
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
4、C
【分析】
根据流程图所示顺序,逐框分析代入求值即可.
【详解】
解:当输入时,
代入
代入,则输出
故选C
【点睛】
本题考查了程序流程图与代数式求值,正确代入求值是解题的关键.
5、B
【分析】
令该一元二次方程的判根公式,计算求解不等式即可.
【详解】
解:∵
∴
∴
解得
故选B.
【点睛】
本题考查了一元二次方程的根与解一元一次不等式.解题的关键在于灵活运用判根公式.
6、D
【分析】
根据位似变换的性质得到,得到,求出,根据相似三角形的面积比等于相· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
似比的平方计算即可.
【详解】
解:与位似,
,
,
,
,
,
,
故选:D.
【点睛】
本题考查的是位似变换的概念和性质、相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.
7、C
【分析】
根据黄金矩形的定义,得出宽与长的比例即可得出答案.
【详解】
解:黄金矩形的宽与长的比等于黄金数,
,
.
故选:C.
【点睛】
本题考查新定义题型,给一个新的定义,根据定义来解题,对于这道题是基础题型.
8、B
【分析】
先由与互余,求解 再利用对顶角相等可得答案.
【详解】
解:与互余,
,
,
,
,
故选:B.
【点睛】
本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键.
9、B
【分析】
从折叠图形的性质入手,结合平行线的性质求解.
【详解】
解:由折叠图形的性质结合平行线同位角相等可知,,
,
.
故选:B.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.
10、A
【分析】
根据DE∥BC,得△DEF∽△CBF,得到,利用BE是中线,得到+=,计算即可.
【详解】
∵是的中位线,
∴DE∥BC,BC=2DE,
∴△DEF∽△CBF,
∴,
∴,
∵,
∴,
∵BE是中线,
∴=,
∵是的中位线,
∴DE∥BC,
∴=,
∴=,
∴++=+,
∴+=,
∴=3,
故选A.
【点睛】
本题考查了三角形中位线定理,中线的性质,相似三角形的性质,熟练掌握中位线定理,灵活选择相似三角形的性质是解题的关键.
二、填空题
1、16
【分析】
依题意,按照幂的定义及形式,对底数进行转换,利用其性质计算即可;
【详解】
由题知,64=43,∴ 6423=(43)23=43×23=42=16;
故填:16;
【点睛】
本题主要考查幂的定义性质及其底数的灵活转换,关键在熟练其定义;
2、41
【分析】
由折叠可知∠DFE=∠BAC=60°,由平角定义得∠DFB +∠EFC =120°,再根据∠EFC比∠DFB大38°,得到∠EFC -∠DFB =38°,即可解得∠DFB的值.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:由折叠可知∠DFE=∠BAC=60°,
∵∠DFB +∠DFE +∠EFC =180°,
∴∠DFB +∠EFC =120°,
∴∠EFC =120°-∠DFB,
∵∠EFC比∠DFB大38°,
∴∠EFC -∠DFB =38°,即120°-∠DFB -∠DFB =38°
解得∠DFB =,
故答案为:41
【点睛】
此题考查折叠的性质、平角的定义及一元一次方程的解法,掌握相应的性质和解法是解答此题的关键.
3、35°
【分析】
根据方向角的表示方法可得答案.
【详解】
解:如图,
∵城市C在城市A的南偏东60°方向,
∴∠CAD=60°,
∴∠CAF=90°-60°=30°,
∵∠BAC=155°,
∴∠BAE=155°-90°-30°=35°,
即城市B在城市A的北偏西35°,
故答案为:35°.
【点睛】
本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
4、22+210
【分析】
作点B关于y轴的对称点C,连接AC,与y轴的交点即为满足条件的点P,由勾股定理求出AC、AB的长,即可求得△ABP周长最小值.
【详解】
作点B关于y轴的对称点C,则点C的坐标为(4,2),连接AC,与y轴的交点即为满足条件的点P,如图所示
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由对称的性质得:PB=PC
∴AB+PA+PB=AB+PA+PC≥AB+AC
即当点P在AC上时,△ABP周长最小,且最小值为AB+AC
由勾股定理得:AB=(-2+4)2+(4-2)2=22,AC=(-2+4)2+(4+2)2=210
∴△ABP周长最小值为22+210
故答案为:22+210
【点睛】
本题考查了点与坐标,两点间距离最短,对称的性质,勾股定理等知识,作点关于x轴的对称点是关键.
5、﹣3或1
【分析】
根据x2+22这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.
【详解】
解:∵二次三项式x2-2(k+1)x+4是完全平方式,
∴x2-2(k+1)x+4=或x2-2(k+1)x+4=(x+2)2=x2+4x+4,
∴-2(k+1)=4或-2(k+1)=-4,
解得k=﹣3或k=1,
故答案为:﹣3或1.
【点睛】
本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键.
三、解答题
1、30L垃圾桶的单价是20元,120L垃圾桶的单价是100元
【分析】
设垃圾桶的单价是元,垃圾桶的单价是元,等量关系为:买5个30L垃圾桶的钱+买9个120L垃圾桶的钱=1000 ;买10个30L垃圾桶的钱+买5个120L垃圾桶的钱=700 ;根据这两个等量关系列出方程组并解方程组即可.
【详解】
设垃圾桶的单价是元,垃圾桶的单价是元,
依题意得:,
解得:.
即垃圾桶的单价是20元,垃圾桶的单价是100元.
【点睛】
本题考查了二元一次方程组的应用,关键是理解题意,找到等量关系并正确列出方程组.
2、
(1)8×9=72
(2)①10100 ②8866
【分析】
(1)仔细观察给出的等式可发现从2开始连续2个偶数和是2×3,连续3个,4个偶数和为3×4,4×5,当有m个从2开始的连续偶数相加是,式子就应该表示成:2+4+6+…+2m=m(m+1),从而推出当m=8时,和的值;
(2)①直接根据(1)中规律计算即可;
②用2+4+6+…+82+84+86+…+204的和减去2+4+6+…+80的和即可.
(1)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:∵2+2=2×2,
2+4=6=2×3=2×(2+1),
2+4+6=12=3×4=3×(3+1),
2+4+6+8=20=4×5=4×(4+1),
…,
∴2+4+6+…+2m=m(m+1),
∴m=8时,和为:8×9=72;
故答案为:72;
(2)
①2+4+6+…+200
=100×101,
=10100;
②82+84+86+…+204 =(2+4+6+…+82+84+86+…+204)-(2+4+6+…+80)
=102×103-40×41
=10506-1640
=8866.
【点睛】
此题主要考查了数字规律,要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值是解题关键.
3、见解析
【分析】
由垂直可得,根据相似三角形的判定定理直接证明即可.
【详解】
证明:∵,
∴,
在和中,
∵,
∴.
【点睛】
题目主要考查相似三角形的判定定理,熟练掌握相似三角形的判定是解题关键.
4、
(1)见解析.
(2)线段的长为5.
【分析】
(1)利用垂直平分线的作图方法直接画图即可.
(2)由垂直平分线的性质可知:,设,在中,利用勾股定理列出关于x的方程,并进行求解即可.
(1)
(1)分别以点A、C为圆心,以大于长画弧,连接两组弧的交点,与AC交于点E,与BC交于点D,如下所示:
(2)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)解:连接AD,如下图所示:
由垂直平分线的性质可知:
设,
在中,由勾股定理可知:
解得:
故AD的长为5.
【点睛】
本题主要是考查了垂直平分线的画法及性质、勾股定理求解边长,熟练掌握垂直平分线的作法,以及利用勾股定理列方程求边长,是解决该题的关键.
5、(1)正方体;(2)长方体;(3)三棱柱;(4)四棱锥;(5)圆柱;(6)三棱柱.
【分析】
根据立体图形的展开图的知识点进行判断,正方体由六个正方形组成,长方体由两个矩形组成,且每个对面的形状和大小一样;三棱柱由5个面组成;四棱锥由四个三角形和一个矩形组成;圆柱由一个长方形和两个圆组成;三棱柱由两个三角形和四个矩形组成.
【详解】
解:由分析如下:(1)正方体;(2)长方体;(3)三棱柱;(4)四棱锥;(5)圆柱;(6)三棱柱.
故答案为:正方体;长方体;三棱柱;四棱锥;圆柱;三棱柱.
【点睛】
此题考查了几何体的展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
相关试卷
这是一份【真题汇编】贵州省中考数学历年真题定向练习 卷(Ⅰ)(含答案及详解),共24页。试卷主要包含了下列方程变形不正确的是等内容,欢迎下载使用。
这是一份【真题汇编】贵州省安顺市中考数学历年真题定向练习 卷(Ⅰ)(含答案及解析),共25页。试卷主要包含了下列运算正确的是,如图,有三块菜地△ACD,下列图形是全等图形的是等内容,欢迎下载使用。
这是一份【历年真题】2022年中考数学历年真题定向练习 卷(Ⅰ)(含答案详解),共25页。试卷主要包含了观察下列图形,在以下实数中,下列方程是一元二次方程的是,二次函数 y=ax2+bx+c等内容,欢迎下载使用。