初中数学沪科版九年级下册第24章 圆综合与测试练习题
展开这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习题,共36页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )
A. B. C. D.
2、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )
A.4 B.6 C.8 D.10
3、下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B. C. D.
4、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为( )
A. B. C. D.8
5、点P(3,﹣2)关于原点O的对称点的坐标是( )
A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)
6、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=( )
A.10 B.2 C.2 D.4
7、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )
A.19° B.38° C.52° D.76°
8、下列图形中,既是中心对称图形又是抽对称图形的是( )
A. B. C. D.
9、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是( )
A..等腰三角形 B.等边三角形
C..直角三角形 D..等腰直角三角形
10、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )
A.它们的开口方向相同 B.它们的对称轴相同
C.它们的变化情況相同 D.它们的顶点坐标相同
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°
2、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:
(1)如图(1)已知,,点P在BC边所在的直线l上移动,小方发现AP的最小值是______;
(2)如图(2)在直角中,,,,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.
3、如图,⊙O的半径为5cm,正六边形ABCDEF内接于⊙O,则图中阴影部分的面积为 ___.
4、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.
5、已知如图,AB=8,AC=4,∠BAC=60°,BC所在圆的圆心是点O,∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为____________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是的直径,四边形内接于,是的中点,交的延长线于点.
(1)求证:是的切线;
(2)若,,求的长.
2、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上.记点D1的坐标是(m,n),C1的坐标是(p,q).
(1)设∠DAD1=30°,n=2,求证:OD1的长度;
(2)若∠DAD1<90°,m,n满足m+n=﹣4,p2+q2=25,求p+q的值.
3、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与△PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F.
(1)如图,当点P在线段AB上运动时,若∠DBE=30°,PB=2,求DE的长;
(2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明.
4、如图,已知为的直径,切于点C,交的延长线于点D,且.
(1)求的大小;
(2)若,求的长.
5、在平面直角坐标系xOy中,⊙O的半径为1.
对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到⊙O的弦A′B′,则称线段AB是⊙O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”.
(1)如图,线段CD,EF,GH中是⊙O的以直线l为对称轴的“反射线段”有 ;
(2)已知A点坐标为(0,2),B点坐标为(1,1),
①若线段AB是⊙O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标.
②若将“反射线段”AB沿直线y=x的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为yM,求S.
(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN=1,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积.
(4)已知点M,N是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是⊙O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围.
-参考答案-
一、单选题
1、A
【分析】
如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
【详解】
解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:
四边形为正方形,则
设 而AB=2,CD=3,EF=5,结合正方形的性质可得:
而
又 而
解得:
故选A
【点睛】
本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
2、A
【分析】
根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
【详解】
解:∵AB是⊙O的直径,
∴ ,
∵∠BAC=30°,BC=2,
∴.
故选:A
【点睛】
本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
3、B
【分析】
根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
【详解】
解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
B、是中心对称图形但不是轴对称图形,故符合题意;
C、既不是轴对称图形也不是中心对称图形,故不符合题意;
D、是轴对称图形但不是中心对称图形,故不符合题意;
故选B.
【点睛】
本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
4、A
【分析】
过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.
【详解】
解:如图,过点作于点,连接,
AB是的直径,,,
,
在中,
故选A
【点睛】
本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.
5、B
【分析】
根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.
【详解】
解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).
故选:B.
【点睛】
本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.
6、D
【分析】
首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在Rt△B'C'C中利用勾股定理求解.
【详解】
解:∵在Rt△ABC中,AB=6,BC=8,
∴,
由旋转性质可知,AB= AB'=6,BC= B'C'=8,
∴B'C=10-6=4,
在Rt△B'C'C中,,
故选:D.
【点睛】
本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.
7、B
【分析】
连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.
【详解】
解:连接 为的直径,
为的切线,
故选B
【点睛】
本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.
8、B
【详解】
解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;
.既是轴对称图形,也是中心对称图形,故此选项符合题意;
.是轴对称图形,不是中心对称图形,故此选项不符合题意;
.不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:B.
【点睛】
本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9、D
【分析】
根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.
【详解】
解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,
∴∠ECF=90°,CE=CF,
∴△CEF是等腰直角三角形,
故选:D.
【点睛】
本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.
10、B
【分析】
根据旋转的性质及抛物线的性质即可确定答案.
【详解】
抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.
故选:B
【点睛】
本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.
二、填空题
1、
【分析】
连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB
【详解】
解:连接,如图,
PA,PB分别与⊙O相切
故答案为:
【点睛】
本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.
2、10 5
【分析】
(1)如图,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.
(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.
【详解】
解:如图作AH⊥BC于H,
∵AB=AC=20,,
∴ ,
∵ ,
∴ ,
根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为10.
∴AP的最小值是10;
(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.
∵∠ACB=90°,∠B=30°,
∴∠CAK=60°,
∴∠PAD=∠CAK,
∴∠PAC=∠DAK,
∵PA=DA,CA=KA,
∴△PAC≌△DAK(SAS),
∴PC=DK,
∵KD⊥BC时,KD的值最小,
∵ ,
是等边三角形,
∴ ,
∴PC的最小值为5.
【点睛】
本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题.
3、
【分析】
根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.
【详解】
如图,连接BO,OC,OA,
由题意得:△BOC,△AOB都是等边三角形,
∴∠AOB=∠OBC=60°,
∴OA∥BC,
∴,
.
故答案为:.
【点睛】
本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出.
4、45
【分析】
连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.
【详解】
解:连接OC,OD,
∵直径AB=30,
∴OC=OD=,
∴CD∥AB,
∴S△ACD=S△OCD,
∵长为6π,
∴阴影部分的面积为S阴影=S扇形OCD=,
故答案为:45π.
【点睛】
本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.
5、12
【分析】
如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题.
【详解】
解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,
∴当MN的值最小时,△PEF的值最小,
∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,
∴∠MAN=120°,
∴MN=AM=PA,
∴当PA的值最小时,MN的值最小,
取AB的中点J,连接CJ.
∵AB=8,AC=4,
∴AJ=JB=AC=4,
∵∠JAC=60°,
∴△JAC是等边三角形,
∴JC=JA=JB,
∴∠ACB=90°,
∴BC=,
∵∠BOC=60°,OB=OC,
∴△OBC是等边三角形,
∴OB=OC=BC=4,∠BCO=60°,
∴∠ACH=30°,
∵AH⊥OH,
AH=AC=2,CH=AH=2,
∴OH=6,
∴OA==4,
∵当点P在直线OA上时,PA的值最小,最小值为-,
∴MN的最小值为•(-)=-12.
故答案:-12.
【点睛】
本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题.
三、解答题
1、(1)见详解;(2)
【分析】
(1)连接OD,由圆周角定理可得∠AOD=∠ABC,从而得OD∥BC,进而即可得到结论;
(2)连接AC,交OD于点F,利用勾股定理可得AC,,再证明四边形DFCE是矩形,进而即可求解.
【详解】
(1)证明:连接OD,
∵是的中点,
∴∠ABC=2∠ABD,
∵∠AOD=2∠ABD,
∴∠AOD=∠ABC,
∴OD∥BC,
∵,
∴,
∴是的切线;
(2)连接AC,交OD于点F,
∵AB是直径,
∴∠ACB=90°,
∴AC=,
∵是的中点,
∴OD⊥AC,AF=CF=3,
∴,
∴DF=5-4=1,
∵∠E=∠EDF=∠DFC=90°,
∴四边形DFCE是矩形,
∴DE=CF=3,CE=DF=1,
∴,
∴AD=CD=,
∵∠ADB=90°,
∴
【点睛】
本题主要考查切线的判定定理,圆周角定理以及勾股定理,添加辅助线构造直角三角形和矩形,是解题的关键.
2、(1)4;(2)-1或-7
【分析】
(1)如图,且三点在一条直线上的情况,连接,过点向作垂线交点为,在直角三角形中,,,可求的长;
(2)如图,过点向作垂线交点为,过点作轴垂线交于点,作交点为;由,知,,点G坐标为,得,由知的值,从而得到的值.
【详解】
解:(1)∵∠DAD1=30°且D1、C1、O三点在一条直线上
∴如图所示,连接,过点向作垂线交点为
∴
∵
.
(2)如图过点向作垂线交点为,过点作轴垂线交于点,作交点为
,
在和中
点横坐标可表示为
∴p+q=-7或-1.
【点睛】
本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系.
3、(1) (2)PF=AB-PB或PF=AB+PB,理由见解析
【分析】
(1)根据△PBD等腰直角三角形,PB=2,求出DB的长,由⊙O是△PBD的外接圆,∠DBE=30°,可得答案;
(2)根据同弧所对的圆周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可证△APD≌△FPB,可得答案.
【详解】
解:(1)由题意画以下图,连接EP,
∵△PBD等腰直角三角形,⊙O是△PBD的外接圆,
∴∠DPB=∠DEB=90°,
∵PB=2,
∴ ,
∵∠DBE=30°,
∴
(2)①点P在点A、B之间,
由(1)的图根据同弧所对的圆周角相等,可得:
∠ADP=∠FBP,
又∵△PBD等腰直角三角形,
∴∠DPB=∠APD=90°,DP=BP,
在△APD和△FPB中
∴△APD≌△FPB
∴AP=FP,
∵AP+PB=AB
∴FP+PB=AB,
∴FP=AB-PB,
②点P在点B的右侧,如下图:
∵△PBD等腰直角三角形,
∴∠DPB=∠APF=90°,DP=BP,
∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,
∴∠PBF=∠PDA,
在△APD和△FPB中
∴△APD≌△FPB
∴AP=FP,
∴AB+PB=AP,
∴AB+PB=PF,
∴PF= AB+PB.
综上所述,FP=AB-PB或PF= AB+PB.
【点睛】
本题考查了圆的性质,等腰直角三角形,三角形全等的判定,做题的关键是注意(2)的两种情况.
4、
(1)45°
(2)
【分析】
(1)连接OC,根据切线的性质得到OC⊥CD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;
(2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.
(1)
连接.
∵ ,
∴ ,即 .
∵ ,
∴ .
∵ 是⊙的切线,
∴ ,即 .
∴ .
∴ .
∴ .
(2)
∵ ,,
∴ .
∵ ,
∴ .
∴ 的长.
【点睛】
本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.
5、(1)EF、CD;(2)①;②;(3);(4)或
【分析】
(1)的半径为1,则的最长的弦长为2,根据两点的距离可得,进而即可求得答案;
(2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得的坐标;②由①可得当时,yM,设当取得最大值时,过点作轴,根据题意,分别为沿直线y=x的方向向上平移一段距离S 后的对应点,则,根据余弦求得进而代入数值列出方程,解方程即可求得的最大值,进而求得的范围;
(3)根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线,求得半径为,根据圆的面积公式进行计算即可;
(4)根据(2)的方法找到所在的圆心,当M点在圆上运动一周时,如图,取的中点,的中点,即的中点在以为圆心,半径为的圆上运动,进而即可求得反射轴l与y轴交点的纵坐标的取值范围
【详解】
(1)的半径为1,则的最长的弦长为2
根据两点的距离可得
故符合题意的“反射线段”有EF、CD;
故答案为:EF、CD
(2)①如图,过点作轴于点,连接
A点坐标为(0,2),B点坐标为(1,1),
,且,
的半径为1,
,且
线段AB是⊙O的以直线l为对称轴的“反射线段”,,
②由①可得当时,yM
如图,设当取得最大值时,过点作轴,根据题意,分别为沿直线y=x的方向向上平移一段距离S 后的对应点,则,
过中点,作直线交轴于点,则即为反射轴
yM,
即
即
解得(舍)
(3)
的半径为1,则是等边三角形,
根据圆的旋转对称性,找到所在的的圆心,如图,以为边在内作等边三角形,连接,取的中点,过作的垂线,则即为反射轴,
反射轴l未经过的区域是以为圆心为半径的圆,反射轴l是该圆的切线
当M点在圆上运动一周时,求反射轴l未经过的区域的面积为.
(4)如图,根据(2)的方法找到所在的圆心,
设
则
,是等腰直角三角形
,
当M点在圆上运动一周时,如图,取的中点,的中点,
是的中位线
,
即的中点在以为圆心,半径为的圆上运动
若MN是⊙O的以直线l为对称轴的“反射线段”,则为的切线
设与轴交于点
,
同理可得
反射轴l与y轴交点的纵坐标的取值范围为或
【点睛】
本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共31页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题,共28页。
这是一份2020-2021学年第24章 圆综合与测试练习题,共26页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。