年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪科版九年级数学下册第24章圆综合训练试题(含答案解析)

    2022年精品解析沪科版九年级数学下册第24章圆综合训练试题(含答案解析)第1页
    2022年精品解析沪科版九年级数学下册第24章圆综合训练试题(含答案解析)第2页
    2022年精品解析沪科版九年级数学下册第24章圆综合训练试题(含答案解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第24章 圆综合与测试练习题

    展开

    这是一份2020-2021学年第24章 圆综合与测试练习题,共26页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在△ABC中,,点OAB中点.以点C为圆心,CO长为半径作⊙C,则⊙CAB的位置关系是(    A.相交 B.相切C.相离 D.不确定2、如图,AB的直径,,劣弧BC的长是劣弧BD长的2倍,则AC的长为(    A. B. C.3 D.3、如图,在中,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为(    A.3 B.4 C.5 D.64、如图图案中,不是中心对称图形的是(    A. B. C. D.5、如图,都是上的点,,垂足为,若,则的度数为(    A. B. C. D.6、如图,的直径,上的两点,若,则    A.15° B.20° C.25° D.30°7、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是(  )A..等腰三角形 B.等边三角形C..直角三角形 D..等腰直角三角形8、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )A.1cm B.2cm C.2cm D.4cm9、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )A.10 B.6 C.6 D.1210、图2是由图1经过某一种图形的运动得到的,这种图形的运动是(    A.平移 B.翻折 C.旋转 D.以上三种都不对第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点AB,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_______.2、如图,四边形ABCD内接于圆,ECD延长线上一点, 图中与∠ADE相等的角是 _________ .3、在平面直角坐标系中,点,圆Cx轴相切于点A,过A作一条直线与圆交于AB两点,AB中点为M,则OM的最大值为______.4、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).5、已知正多边形的半径与边长相等,那么正多边形的边数是______.三、解答题(5小题,每小题10分,共计50分)1、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是     对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.2、如图,的两条切线,切点分别为,连接并延长交于点,过点的切线交的延长线于点于点(1)求证:四边形是矩形;(2)若,求的长..3、如图,已知等边内接于⊙OD的中点,连接DB,DC,过点CAB的平行线,交BD的延长线于点E.(1)求证:CE是⊙O的切线;(2)若AB的长为6,求CE的长.4、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.(1)请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;(2)把图③补成只是中心对称图形,并把中心标上字母P5、如图AB是⊙O的直径,弦CDAB于点E,作∠FAC=∠BAC,过点CCFAF于点F(1)求证:CF是⊙O的切线;(2)若sin∠CAB=,求=_______.(直接写出答案) -参考答案-一、单选题1、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断的切线,进而可得⊙CAB的位置关系【详解】解:连接,,点OAB中点.CO为⊙C的半径,的切线,CAB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.2、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接 是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.3、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.【详解】由旋转的性质得:是等边三角形,故选:A.【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.4、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.5、B【分析】连接OC.根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC分别是所对的圆周角和圆心角,故选:B.【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.6、C【分析】根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.【详解】解:∵∠BOC=130°,∴∠BDC=BOC=65°,AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=90°-65°=25°,故选:C.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.7、D【分析】根据旋转的性质推出相等的边CECF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.【详解】解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,∴∠ECF=90°,CECF∴△CEF是等腰直角三角形,故选:D【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.8、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过 设半径为r,即OA=OB=AB=rOM=OA•sin∠OAB=∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.9、D【分析】连接OBOC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OBOC∵∠BAC=30°,∴∠BOC=60°.OB=OCBC=6,∴△OBC是等边三角形,OB=BC=6.∴⊙O的直径等于12.故选:D.【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.10、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.二、填空题1、##【分析】先求出点AB的坐标,过点AAFAB,交直线BC于点F,过点FEFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案.【详解】解:∵一次函数y=-2x+4的图像与x轴、y轴分别交于点AB两点,∴令,则;令,则∴点A为(2,0),点B为(0,4),过点AAFAB,交直线BC于点F,过点FEFx轴,垂足为E,如图,∴△ABF是等腰直角三角形,AF=AB∴△ABO≌△FAEAAS),AO=FEBO=AE∴点F的坐标为();设直线BC,则,解得:∴直线BC的函数表达式为故答案为:【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.2、∠ABC【分析】根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果.【详解】解:∵四边形ABCD内接于圆,ECD延长线上一点,故答案为:【点睛】题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.3、##【分析】如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是△ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可.【详解】解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点∵点C的坐标为(2,2),圆Cx轴相切于点A∴点A的坐标为(2,0),OA=OD=2,即OAD的中点,又∵MAB的中点,  OM是△ABD的中位线,∴当BD最小时,OM也最小,∴当B运动到时,BD有最小值C(2,2),D(-2,0),故答案为:【点睛】本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键.4、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形ABCD′的位置,∴∠ADC=∠D=90°,∠DAD′=α∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.5、六【分析】设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.【详解】解:设这个正多边形的边数为n∵正多边形的半径与边长相等,OA=OB=AB∴△OAB是等边三角形,∴∠AOB=60°,∴正多边形的边数是六,故答案为:六.【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.三、解答题1、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形.【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.2、(1)见详解;(2)7【分析】(1)根据切线的性质和矩形的判定定理即可得到结论;(2)根据切线长定理可得AB=ACBE=DE,再利用勾股定理即可求解.【详解】(1)证明:∵DE的两条切线,于点∴∠EFC=∠EDC=∠FCD=90°,∴四边形是矩形;(2)∵四边形是矩形,EF=CF=DE的两条切线,AB=ACBE=DEAB=AC=x,则AE=x+2,AF=x-2,中,解得:x=5,AC=5+2=7.【点睛】本题主要考查切线长定理和勾股定理以及矩形的判定定理,掌握切线长定理以及勾股定理是解题的关键.3、(1)见解析;(2)3【分析】(1)由题意连接OCOB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.【详解】解:(1)证明:如图连接OC、OB是等边三角形    又 ∵与⊙O相切; (2)∵四边形ABCD是⊙O的内接四边形,D的中点,     【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.4、(1)见解析(2)见解析【分析】(1)根据轴对称图形,中心对称图形的性质画出图形即可.(2)根据中心对称图形的定义画出图形即可.(1)解:图形如图①②所示.(2)解:图形如图③所示,点P即为所求作.【点睛】本题考查利用旋转变换设计图案,正方形的性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.5、(1)见解析(2)【分析】(1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CFAF可得∠OCF=90°,即可得出CF是⊙O的切线;(2)利用AAS可证明△AFC≌△AEC,可得SAFC=SAEC,根据垂径定理可得CE=DE,可得SBCD=2SBCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=AB=,进而可得AE=,根据三角形面积公式即可得答案.(1)(1)如图,连接OCOA=OC∴∠CAB=∠ACO∠FAC=∠BAC∴∠FAC=∠ACOAF//OC∴∠AFC+∠OCF=180°,CFAF∴∠OCF=90°,即OCCFCF是⊙O的切线.(2)在△AFC和△AEC中,∴△AFC≌△AECSAFC=SAECAB是⊙O的直径,CDABCE=DESBCD=2SBCE∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,∴∠BCE=∠CBA∵sin∠CAB=∴sin∠CAB=sin∠BCE=BE=AB=AE=====故答案为:【点睛】本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共31页。

    沪科版九年级下册第24章 圆综合与测试课后作业题:

    这是一份沪科版九年级下册第24章 圆综合与测试课后作业题,共25页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试课后练习题:

    这是一份数学九年级下册第24章 圆综合与测试课后练习题,共29页。试卷主要包含了如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map