终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆章节训练试卷(含答案解析)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆章节训练试卷(含答案解析)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆章节训练试卷(含答案解析)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆章节训练试卷(含答案解析)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试复习练习题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试复习练习题,共36页。
    沪科版九年级数学下册第24章圆章节训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
    A.2个 B.3个 C.4个 D.5个
    2、如图,在中,,,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )

    A. B. C. D.
    3、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).

    A.20° B.25° C.30° D.40°
    4、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )
    A. B.
    C. D.
    5、如图,CD是的高,按以下步骤作图:
    (1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.
    (2)作直线GH交AB于点E.
    (3)在直线GH上截取.
    (4)以点F为圆心,AF长为半径画圆交CD于点P.
    则下列说法错误的是( )

    A. B. C. D.
    6、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )
    A.不变 B.面积扩大为原来的3倍
    C.面积扩大为原来的9倍 D.面积缩小为原来的
    7、下列图形中,可以看作是中心对称图形的是( )
    A. B.
    C. D.
    8、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )

    A. B. C. D.
    9、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
    A. B. C. D.
    10、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )

    A.1cm B.2cm C.3cm D.4cm
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,四边形ABCD内接于圆,E为CD延长线上一点, 图中与∠ADE相等的角是 _________ .

    2、圆锥的母线长为,底面圆半径为r,则全面积为______.
    3、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.

    4、如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_______.

    5、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.
    三、解答题(5小题,每小题10分,共计50分)
    1、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H.
    (1)当直线l在如图①的位置时
    ①请直接写出与之间的数量关系______.
    ②请直接写出线段BH,EH,CH之间的数量关系______.
    (2)当直线l在如图②的位置时,请写出线段BH,EH,CH之间的数量关系并证明;
    (3)已知,在直线l旋转过程中当时,请直接写出EH的长.

    2、请阅读下列材料,并完成相应的任务:
    阿基米德是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Binmi (973-1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi详本出版了俄文版《阿基米德全集》.第一题就是阿基米德折弦定理.阿基米德折弦定理:如图1,和是的两条弦(即折线是圆的一条折弦),, 是的中点,则从向所作垂线的垂足是折弦的中点,即.
    下面是运用“截长法”证明的部分证明过程.
    证明:如图2,在上截取,连接和.
    是的中点,



    任务:
    (1)请按照上面的证明思路,写出该证明部分;
    (2)填空:如图3,已知等边内接于,,为上一点,,于点,则的周长是_________.

    3、如图,四边形ABCD内接于⊙O,AC是直径,点C是劣弧BD的中点.

    (1)求证:.
    (2)若,,求BD.
    4、如图 1,O为直线 DE上一点,过点 O在直线 DE上方作射线 OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边 OA在射线 OD上,另一边 OB在直线 DE上方,将直角三角板绕点 O 按每秒 5°的速度逆时针旋转一周,设旋转时间为t 秒.

    (1)如图2,当t=4 时,∠AOC= ,∠BOE= ,∠BOE﹣∠AOC= ;
    (2)当三角板旋转至边 AB与射线 OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;
    (3)在旋转过程中,是否存在某个时刻,使得射线 OA、OC、OD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值,若不存在,请说明理由.
    5、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.
    已知点N(3,0),A(1,0),,.

    (1)①在点A,B,C中,线段ON的“二分点”是______;
    ②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;
    (2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.

    -参考答案-
    一、单选题
    1、A
    【分析】
    根据轴对称图形与中心对称图形的概念进行判断.
    【详解】
    解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
    等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
    共2个既是轴对称图形又是中心对称图形.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    2、B
    【分析】
    阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.
    【详解】
    解:由图可知:阴影部分的面积=扇形扇形,
    由旋转性质可知:,,
    ,,
    在中,,,,
    ,,
    有勾股定理可知:,
    阴影部分的面积=扇形扇形


    故选:B.
    【点睛】
    本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.
    3、B
    【分析】
    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
    【详解】
    解:连接OA,如图,

    ∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴∠PAO=90°,
    ∵∠P=40°,
    ∴∠AOP=50°,
    ∵OA=OB,
    ∴∠B=∠OAB,
    ∵∠AOP=∠B+∠OAB,
    ∴∠B=∠AOP=×50°=25°.
    故选:B.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    4、C
    【分析】
    利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.
    【详解】
    解:A、不是中心对称图形,故A错误.
    B、不是中心对称图形,故B错误.
    C、是中心对称图形,故C正确.
    D、不是中心对称图形,故D错误.
    故选:C.
    【点睛】
    本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.
    5、C
    【分析】
    连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.
    【详解】
    解:连接AF、BF,由作法可知,FE垂直平分AB,
    ∴,故A正确;
    ∵CD是的高,
    ∴,故B正确;
    ∵,,
    ∴,故C错误;
    ∵,
    ∴∠AFE=45°,
    同理可得∠BFE=45°,
    ∴∠AFB=90°,
    ,故D正确;
    故选:C.

    【点睛】
    本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.
    6、A
    【分析】
    设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.
    【详解】
    设原来扇形的半径为r,圆心角为n,
    ∴原来扇形的面积为,
    ∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的,
    ∴变化后的扇形的半径为3r,圆心角为,
    ∴变化后的扇形的面积为,
    ∴扇形的面积不变.
    故选:A.
    【点睛】
    本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.
    7、C
    【分析】
    根据中心对称图形的定义进行逐一判断即可.
    【详解】
    解:A、不是中心对称图形,故此选项不符合题意;
    B、不是中心对称图形,故此选项不符合题意;
    C、是中心对称图形,故此选项符合题意;
    D、不是中心对称图形,故此选项不符合题意;
    故选C.
    【点睛】
    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:
    把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
    8、D
    【分析】
    连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.
    【详解】
    解:连接CD,如图所示:

    ∵点D是AB的中点,,,
    ∴,
    ∵,
    ∴,
    在Rt△ACB中,由勾股定理可得;
    故选D.
    【点睛】
    本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.
    9、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是轴对称图形,是中心对称图形,故此选项不符合题意;
    D、不是轴对称图形,是中心对称图形,故此选项符合题意;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    10、B
    【分析】
    连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.
    【详解】
    解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:

    ∵AB=8cm,
    ∴BD=AB=4(cm),
    由题意得:OB=OC==5cm,
    在Rt△OBD中,OD=(cm),
    ∴CD=OC-OD=5-3=2(cm),
    即水的最大深度为2cm,
    故选:B.
    【点睛】
    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    二、填空题
    1、∠ABC
    【分析】
    根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果.
    【详解】
    解:∵四边形ABCD内接于圆,
    ∴,
    ∵E为CD延长线上一点,
    ∴,
    ∴,
    故答案为:.
    【点睛】
    题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.
    2、
    【分析】
    根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.
    【详解】
    解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,
    故可得,这个扇形的半径为,扇形的弧长为,
    圆锥的侧面积为;
    圆锥的全面积为圆锥的底面积侧面积:.
    故答案为:.
    【点睛】
    本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.
    3、45
    【分析】
    连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.
    【详解】
    解:连接OC,OD,

    ∵直径AB=30,
    ∴OC=OD=,
    ∴CD∥AB,
    ∴S△ACD=S△OCD,
    ∵长为6π,
    ∴阴影部分的面积为S阴影=S扇形OCD=,
    故答案为:45π.
    【点睛】
    本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.
    4、##
    【分析】
    先求出点A、B的坐标,过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案.
    【详解】
    解:∵一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B两点,
    ∴令,则;令,则,
    ∴点A为(2,0),点B为(0,4),
    ∴,;
    过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,如图,

    ∴,
    ∴,
    ∴,
    ∵,
    ∴△ABF是等腰直角三角形,
    ∴AF=AB,
    ∴△ABO≌△FAE(AAS),
    ∴AO=FE,BO=AE,
    ∴,,
    ∴,
    ∴点F的坐标为(,);
    设直线BC为,则
    ,解得:,
    ∴直线BC的函数表达式为;
    故答案为:;
    【点睛】
    本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.
    5、 4
    【分析】
    设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.
    【详解】
    解:设一直角边长为x,另一直角边长为(6-x),
    ∵三角形是直角三角形,
    ∴根据勾股定理,
    整理得:,
    解得,
    这个直角三角形的斜边长为外接圆的直径,
    ∴外接圆的半径为cm,
    三角形面积为.
    故答案为;.
    【点睛】
    本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.
    三、解答题
    1、(1)①;②;(2);证明见解析;(3)或.
    【分析】
    (1)①,根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CF⊥DE,得出CF平分∠ECD即可;
    ②,过点C作CG⊥BE于G,根据BC=EC,得出∠ECG=∠BCG=,根据∠ECH=∠HCD=,可得CG=HG,根据勾股定理在Rt△GHC中,,根据GE=,得出即可;
    (2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;
    (3)或,根据,分两种情况,当∠ABE=90°-15°=75°时,BC=CE,先证△CDE为等边三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根据CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根据勾股定理HE=,当∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根据30°直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可.
    【详解】
    解:(1)①
    ∵CE=BC,四边形ABCD为正方形,
    ∴BC=CD=CE,
    ∵CF⊥DE,
    ∴CF平分∠ECD,
    ∴∠ECH=∠HCD,
    故答案为:∠ECH=∠HCD;

    ②,过点C作CG⊥BE于G,
    ∵BC=EC,
    ∴∠ECG=∠BCG=,
    ∵∠ECH=∠HCD=,
    ∴∠GCH=∠ECG+∠ECF=+,
    ∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,
    ∴CG=HG,
    在Rt△GHC中,
    ∴,
    ∵GE=,
    ∴GH=GE+EH=,
    ∴,
    ∴,
    ∴,
    故答案是:;

    (2),
    证明:过点C作交BE于点M,

    则,
    ∴⁰,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∴,,
    ∴是等腰直角三角形,
    ∴,
    ∵,
    ∴,
    (3)或,
    ∵,分两种情况,
    当∠ABE=90°-15°=75°时,
    ∵BC=CE,
    ∴∠CBE=∠CEB=15°,
    ∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,
    ∴∠DCE=∠BCE-∠BCD=150°=90°=60°,
    ∵CE=CD,
    ∴△CDE为等边三角形,
    ∴DE=CD=AB=2,∠DEC=60°,
    ∴∠FEH=∠DEC=∠CEB=60°-15°=45°,
    ∵CF⊥DE,
    ∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,
    ∴EF=HF=1,
    ∴HE=,

    当∠ABE=90°+15°=105°,
    ∵BC=CE,∠CBE=∠CEB=15°,
    ∴∠BCE=180°-∠CBE-∠CEB=150°,
    ∴∠DCE=360°-∠DCB-∠BCE=120°,
    ∵CE=BC=CD,CH⊥DE,
    ∴∠FCE=,
    ∴∠FEC=180°-∠CFE-∠FCE=30°,
    ∴CF=,
    ∴EF=,
    ∵∠HEF=∠CEB+∠CEF=15°+30°=45°,
    ∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,
    ∴FH=FE,
    ∴EH=,
    ∴或.

    【点睛】
    本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键.
    2、
    (1)证明见解析;
    (2).
    【分析】
    (1)首先证明,进而得出,再利用等腰三角形的性质得出,即可得出答案;
    (2)首先证明,进而得出,以及,进而求出的长即可得出答案.
    (1)
    证明:如图2,在上截取,连接,,和.

    是的中点,

    在和中



    又,


    (2)
    解:如图3,截取,连接,,,

    由题意可得:,

    ∴,
    在和中




    ,则,


    ∵,


    故答案为:.
    【点睛】
    此题主要考查了圆与三角形综合,涉及了圆周角定理、全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键.
    3、(1)见详解;(2)
    【分析】
    (1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;
    (2)由题意易得,然后由(1)可知△ABD是等边三角形,进而问题可求解.
    【详解】
    (1)证明:∵AC是直径,点C是劣弧BD的中点,
    ∴AC垂直平分BD,
    ∴;
    (2)解:∵,,
    ∴,
    ∵,
    ∴△ABD是等边三角形,
    ∵,
    ∴.
    【点睛】
    本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键.
    4、
    (1)30°,70°,40°;
    (2)∠AOC-∠BOE=40°,理由见解析;
    (3)t 的取值为5或20或62
    【分析】
    (1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;
    (2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;
    (3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.
    (1)
    解:∵∠EOC=130°,∠AOB=∠BOE=90°,
    ∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,
    当t=4时,旋转角4×5°=20°,
    ∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,
    ∠BOE-∠AOC=70°-30°=40°,
    故答案为:30°,70°,40°;
    (2)
    解:∠AOC-∠BOE=40°,理由为:
    设旋转角为x,当三角板旋转至边 AB与射线 OE相交时,
    ∠AOC=x-50°,∠BOE=x-90°,
    ∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;
    (3)
    解:存在,
    ①当OA为∠DOC的平分线时,旋转角5t =∠DOC=25,
    ∴t=5;
    ②当OC为∠DOA的平分线时,旋转角5t =2∠DOC=100,
    ∴t=20;
    ③当OD为∠COA的平分线时,360-5t=∠DOC=50,
    ∴t=62,
    综上,满足条件的t 的取值为5或20或62.
    【点睛】
    本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.
    5、(1)①B和C;②或;(2)或
    【分析】
    (1)①分别找出点A,B,C到线段ON的最小值和最大值,是否满足“二分点”定义即可;
    ②对a的取值分情况讨论:、、和,根据“二分点”的定义可求解;
    (2)设线段AN上存在的“二分点”为,对的取值分情况讨论、,、,和,根据“二分点”的定义可求解.
    【详解】
    (1)①

    ∵点A在ON上,故最小值为0,不符合题意,
    点B到ON的最小值为,最大值为,
    ∴点B是线段ON的“二分点”,
    点C到ON的最小值为1,最大值为,
    ∴点C是线段ON的“二分点”,
    故答案为:B和C;
    ②若时,如图所示:

    点C到OD的最小值为,最大值为,
    ∵点C为线段OD的“二分点”,
    ∴,
    解得:;
    若,如图所示:

    点C到OD的最小值为1,最大值为,满足题意;
    若时,如图所示:

    点C到OD的最小值为1,最大值为,
    ∵点C为线段OD的“二分点”,
    ∴,
    解得:(舍);
    若时,如图所示:

    点C到OD的最小值为,最大值为,
    ∵点C为线段OD的“二分点”,
    ∴,
    解得:或(舍),
    综上所得:a的取值范围为或;
    (2)

    如图所示,设线段AN上存在的“二分点”为,
    当时,最小值为:,最大值为:,
    ∴,即,
    ∵,

    ∴;
    当,时,最小值为:,最大值为:,
    ∴∴,即,
    ∵,
    ∴,
    ∵,
    ∴不存在;
    当,时,最小值为:,最大值为:,
    ∴,即,
    ∴,
    ∵,
    ∴不存在;
    当时,最小值为:,最大值为:,
    ∴,即,
    ∴,
    ∵,
    ∴,
    综上所述,r的取值范围为或.
    【点睛】
    本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步训练题,共37页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试复习练习题:

    这是一份初中数学第24章 圆综合与测试复习练习题,共31页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    数学第24章 圆综合与测试练习:

    这是一份数学第24章 圆综合与测试练习

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map