苏科版数学八年级上册第1章全等三角形中的辅助线构造(举一反三)(原卷+解析卷)学案
展开【考点1 角分线上点向角两边作垂线构全等】
【方法点拨】过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问
题;
【例1】如图,已知BP平分∠ABC,PD⊥BC于D,BF+BE=2BD,求证:∠BFP+∠BEP=180°.
【变式1-1】(2019秋•汉阳区期中)已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P
在射线OM上滑动,两直角边分别与OA、OB交于C、D.
(1)PC和PD有怎样的数量关系是 .
(2)请你证明(1)得出的结论.
【变式1-2】(2019•北京校级期中)已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.
(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;
(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.
【变式1-3】(2019秋•东区校级月考)如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在
直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:
(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(不需证明)
(2)如图③,在△ABC中,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
【考点2 截取法构全等】
【方法点拨】利用对称性,在角的两边截取相等的线段,构造全等三角形;
【例2】(2019秋•黄浦区校级期中)已知:在四边形ABCD中,BC>BA,∠A+∠C=180°,且∠C=60°,BD平分∠ABC,求证:BC=AB+DC.
【变式2-1】已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,
CD,BC的数量关系,并说明理由.
【变式2-2】(2019秋•邵阳期末)如图①,在△ABC中,∠ACB=2∠B,AD为∠BAC的角平分线,求证:
AB=AC+CD
小明同学经过思考,得到如下解题思路:
在AB上截取AE=AC,连接DE,得到△ADE≌△ADC,从而易证AB=AC+CD
(1)请你根据以上解思路写出证明过程;
(2)如图②,若AD为△ABC的外角∠CAE平分线,交BC的延长线于点D,∠D=25°,其他条件不变,求∠B的度数.
【变式2-3】(2019•长汀县校级模拟)观察、猜想、探究:
在△ABC中,∠ACB=2∠B.
(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,求证:AB=AC+CD;
(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;
(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.
【考点3 延长垂线段构全等】
【方法点拨】题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形;
【例3】如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE=(AC﹣AB).(提示:延长BE交AC于点F).
【变式3-1】已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.
求证:AC﹣AB=2BE.
【变式3-2】(2019秋•通州区期末)已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.
求证:BD=2CE.
【变式3-3】(2019•成都校级期中)如图,△ABC中,过点A分别作∠ABC,∠ACB的外角的平分线的垂线AD,AE.D,E为垂足,求证:
(1)ED∥BC;
(2)ED=(AB+AC+BC).
【考点4 倍长中线法构全等】
【方法点拨】遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形.
【例4】(2019秋•津南区校级期中)已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.
【变式4-1】(2019秋•闵行区期中)如图,在△ABC中,AE平分∠BAC,交BC于点E,D是BC边上点,
且DE=CE,点F在AE上,联结DF,满足DF=AC,
求证:DF∥AB.
【变式4-2】(2019春•富阳市校级期中)如图,AD为△ABC的中线,∠ADB和∠ADC的平分线分别交AB、
AC于点E、F.求证:BE+CF>EF.
【变式4-3】(2019秋•启东市校级月考)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,
△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下
的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:
(1)由已知和作图能得到△ADC≌△EDB的理由是
A.SSS B.SAS C.AAS D.HL
(2)求得AD的取值范围是
A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7
【方法感悟】
解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
【问题解决】
(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.
【考点5 作平行线构全等】
【方法点拨】有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.
【例5】若两个三角形的一边及其对角对应相等,并有一对角互补(不是直角),则这两个三角形为友好三角形.如图1,点D在AB边上,CD=CB,则△ABC和△ACD就是友好三角形.
(1)两个友好三角形 全等.(从下面选择一个正确的填入)
A.一定 B.不一定 C.一定不
(2)如图2,在△ABC中,AB=AC,点D在AB上,点E在AC延长线上,连结DE交BC于其中BD≠BF,若△BDF和△CEF是友好三角形,求证:DF=EF.
(3)如图3,CE是△ABC的中线,点D在AC上,BD与CE交于点F,CF=AE,DF=DC,图中与△ACE成友好三角形的是 .
【变式5-1】(2019秋•建湖县期末)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.
【变式5-2】(2019春•河口区校级期中)如图所示,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC交BC于E,交CD于F,FG∥AB交BC于G.试判断CE,CF,GB的数量关系,并说明理由.
【变式5-3】△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,
求证:AB+BP=BQ+AQ.(有多种辅助线作法)
【考点6 旋转法构全等】
【方法点拨】对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。.
【例6】(2019秋•清河区校级月考)如图,正方形ABCD中,E、F为BC,CD的上点且∠EAF=45°,求证:EF=BE+DF.
【变式6-1】如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积.
【变式6-2】(2019春•泰安校级月考)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120度.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN.
(1)求证:MN=BM+NC;
(2)求△AMN的周长为多少?
【变式6-3】已知,在四边形ABCD中,点E、F分别在边BC、DC上,连接AF、EF.
(1)如图1,若四边形ABCD为正方形,且∠EAF=45°,求证:EF=BE+DF;
(2)如图2,若四边形ABCD中,AB=AD,∠B+∠D=180°,∠EAF=∠BAD,试问(1)中的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.
苏科版数学八年级上册第5章平面直角坐标系章末重难点题型(举一反三)(原卷+解析卷)学案: 这是一份苏科版数学八年级上册第5章平面直角坐标系章末重难点题型(举一反三)(原卷+解析卷)学案,文件包含苏科版数学八年级上册第5章平面直角坐标系章末重难点题型举一反三解析版docx、苏科版数学八年级上册第5章平面直角坐标系章末重难点题型举一反三原卷版docx等2份学案配套教学资源,其中学案共55页, 欢迎下载使用。
苏科版数学八年级上册第3章勾股定理章末重难点题型(举一反三)(原卷+解析卷)学案: 这是一份苏科版数学八年级上册第3章勾股定理章末重难点题型(举一反三)(原卷+解析卷)学案,文件包含苏科版数学八年级上册第3章勾股定理章末重难点题型举一反三解析版docx、苏科版数学八年级上册第3章勾股定理章末重难点题型举一反三原卷版docx等2份学案配套教学资源,其中学案共54页, 欢迎下载使用。
苏科版数学八年级上册第4章实数章末重难点题型(举一反三)(原卷+解析卷)学案: 这是一份苏科版数学八年级上册第4章实数章末重难点题型(举一反三)(原卷+解析卷)学案,文件包含苏科版数学八年级上册第4章实数章末重难点题型举一反三解析版docx、苏科版数学八年级上册第4章实数章末重难点题型举一反三原卷版docx等2份学案配套教学资源,其中学案共39页, 欢迎下载使用。