所属成套资源:中考数学课时复习(含答案)
中考数学课时复习(含答案):65 圆与圆的位置关系 正多边形与圆
展开
这是一份中考数学课时复习(含答案):65 圆与圆的位置关系 正多边形与圆,共6页。试卷主要包含了选择题等内容,欢迎下载使用。
65圆与圆的位置关系一、选择题1. 如图,圆与圆的位置关系没有( )(第1题图) A.相交B.相切C.内含D.外离 考点:圆与圆的位置关系分析:由其中两圆有的位置关系是:内切,外切,内含、外离.即可求得答案.解答:解:∵如图,其中两圆有的位置关系是:内切,外切,内含、外离.∴其中两圆没有的位置关系是:相交.故选A.点评:此题考查了圆与圆的位置关系.注意掌握数形结合思想的应用.2.如图,两个直径分别为36cm和16cm的球,靠在一起放在同一水平面上,组成如图所示的几何体,则该几何体的俯视图的圆心距是( ) A.10cm.B.24cmC.26cmD.52cm 考点:简单组合体的三视图;勾股定理;圆与圆的位置关系.分析:根据两球相切,可得球心距,根据两圆相切,可得圆心距是半径的和,根据根据勾股定理,可得答案.解答:解:球心距是(36+16)÷2=26,两球半径之差是(36﹣16)÷2=10,俯视图的圆心距是=24cm,故选:B.点评:本题考查了简单组合体的三视图,利用勾股定理是解题关键. 二.填空题1.已知⊙O1与⊙O2的圆心距为6,两圆的半径分别是方程x2﹣5x+5=0的两个根,则⊙O1与⊙O2的位置关系是 相离 .考点: 圆与圆的位置关系;根与系数的关系.分析: 由⊙O1与⊙O2的半径r1、r2分别是方程x2﹣5x+5=0的两实根,根据根与系数的关系即可求得⊙O1与⊙O2的半径r1、r2的和,又由⊙O1与⊙O2的圆心距d=6,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答: 解:∵两圆的半径分别是方程x2﹣5x+5=0的两个根,∴两半径之和为5,解得:x=4或x=2,∵⊙O1与⊙O2的圆心距为6,∴6>5,∴⊙O1与⊙O2的位置关系是相离.故答案为:相离.点评: 此题考查了圆与圆的位置关系与一元二次方程的根与系数的关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键. 三.解答题1. 如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值. (第1题图)考点:圆的性质、两圆的位置关系、解直角三角形分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.解答:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得 r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得 t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得 t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.正多边形与圆一、选择题1.蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有( ) A.4个B.6个C.8个D.10个 考点:正多边形和圆.分析:根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.解答:解:如图,AB是直角边时,点C共有6个位置,即,有6个直角三角形,AB是斜边时,点C共有2个位置,即有2个直角三角形,综上所述,△ABC是直角三角形的个数有6+2=8个.故选C.点评:本题考查了正多边形和圆,难点在于分AB是直角边和斜边两种情况讨论,熟练掌握正六边形的性质是解题的关键,作出图形更形象直观. 2.正六边形的边心距为,则该正六边形的边长是( ) A. B. 2 C. 3 D. 2 考点: 正多边形和圆.分析: 运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.解答: 解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.点评: 本题主要考查了正六边形和圆,注意:外接圆的半径等于正六边形的边长. 二.填空题1.如图,AD是正五边形ABCDE的一条对角线,则∠BAD= . (第1题图)考点:正多边形的计算分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.解答:设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°,故答案是:72°.点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.
相关试卷
这是一份初中数学中考复习:42正多边形与圆的有关的证明和计算(含答案),共10页。
这是一份初中数学中考复习:41正多边形与圆的有关的证明和计算(含答案),共7页。
这是一份中考数学一轮复习课时练习第9单元第29课时正多边形与圆、扇形和圆锥的有关计算(含答案),共5页。