终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学课时复习(含答案):66 动态问题

    立即下载
    加入资料篮
    中考数学课时复习(含答案):66 动态问题第1页
    中考数学课时复习(含答案):66 动态问题第2页
    中考数学课时复习(含答案):66 动态问题第3页
    还剩63页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学课时复习(含答案):66 动态问题

    展开

    这是一份中考数学课时复习(含答案):66 动态问题,共66页。
    66动态问题
    一.选择题
    1.如图,平面直角坐标系中,A点坐标为(2,2),点P(m,n)在直线y=﹣x+2上运动,设△APO的面积为S,则下面能够反映S与m的函数关系的图象是(  )

      A. B. C.

    考点: 动点问题的函数图象..
    分析: 根据题意得出临界点P点横坐标为1时,△APO的面积为0,进而结合底边长不变得出即可.
    解答: 解:∵点P(m,n)在直线y=﹣x+2上运动,
    ∴当m=1时,n=1,即P点在直线AO上,此时S=0,
    当0<m≤1时,S△APO不断减小,当m>1时,S△APO不断增大,且底边AO不变,故S与m是一次函数关系.
    故选:B.

    点评: 此题主要考查了动点问题的函数图象,根据题意得出临界点是解题关键.

    2.如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D的路径移动.设点P经过的路径长为x,PD2=y,则下列能大致反映y与x的函数关系的图象是(  )

      A. B. C. D.

    考点: 动点问题的函数图象..
    分析: 根据题意,分三种情况:(1)当0≤t≤2a时;(2)当2a<t≤3a时;(3)当3a<t≤5a时;然后根据直角三角形中三边的关系,判断出y关于x的函数解析式,进而判断出y与x的函数关系的图象是哪个即可.
    解答: 解:(1)当0≤t≤2a时,
    ∵PD2=AD2+AP2,AP=x,
    ∴y=x2+a2.

    (2)当2a<t≤3a时,
    CP=2a+a﹣x=3a﹣x,
    ∵PD2=CD2+CP2,
    ∴y=(3a﹣x)2+(2a)2=x2﹣6ax+13a2.

    (3)当3a<t≤5a时,
    PD=2a+a+2a﹣x=5a﹣x
    ∵PD2=y,
    ∴y=(5a﹣x)2=(x﹣5a)2,
    综上,可得y=
    ∴能大致反映y与x的函数关系的图象是选项D中的图象.
    故选:D.
    点评: (1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.
    (2)此题还考查了直角三角形的性质和应用,以及勾股定理的应用,要熟练掌握.

    3.如图,在△ABC中,∠C=90°,点P是斜边AB的中点,点M从点C向点A匀速运动,点N从点B向点C匀速运动,已知两点同时出发,同时到达终点,连接PM、PN、MN,在整个运动过程中,△PMN的面积S与运动时间t的函数关系图象大致是(  )

      A. B. C. D.

    考点: 动点问题的函数图象..
    分析: 首先连接CP,根据点P是斜边AB的中点,可得S△ACP=S△BCP=S△ABC;然后分别求出出发时;点N到达BC的中点、点M也到达AC的中点时;结束时,△PMN的面积S的大小,即可推得△MPQ的面积大小变化情况是:先减小后增大,而且是以抛物线的方式变化,据此判断出△PMN的面积S与运动时间t的函数关系图象大致是哪个即可.
    解答: 解:如图1,连接CP,

    ∵点P是斜边AB的中点,
    ∴S△ACP=S△BCP=S△ABC,
    出发时,S△PMN=S△BCP=S△ABC
    ∵两点同时出发,同时到达终点,
    ∴点N到达BC的中点时,点M也到达AC的中点,
    ∴S△PMN=S△ABC;
    结束时,S△PMN=S△ACP=S△ABC,
    △MPQ的面积大小变化情况是:先减小后增大,而且是以抛物线的方式变化,
    ∴△PMN的面积S与运动时间t的函数关系图象大致是:

    故选:A.
    点评: 此题主要考查了动点问题的函数图象,要熟练掌握,解答此题的关键是要明确:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.

    4.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是(  )

      A. 25° B. 30° C. 35° D. 40°

    考点: 轴对称-最短路线问题.
    分析: 分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.
    解答: 解:分别作点P关于OA、OB的对称点C、D,连接CD,
    分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:
    ∵点P关于OA的对称点为C,关于OB的对称点为D,
    ∴PM=CM,OP=OC,∠COA=∠POA;
    ∵点P关于OB的对称点为D,
    ∴PN=DN,OP=OD,∠DOB=∠POB,
    ∴OC=OP=OD,∠AOB=∠COD,
    ∵△PMN周长的最小值是5cm,
    ∴PM+PN+MN=5,
    ∴CM+DN+MN=5,
    即CD=5=OP,
    ∴OC=OD=CD,
    即△OCD是等边三角形,
    ∴∠COD=60°,
    ∴∠AOB=30°;
    故选:B.

    点评: 本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.

    5.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连接PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是(  )

    A. 8 B. 10 C. 3π D. 5π
    考点: 轨迹.
    专题: 计算题.
    分析: 连结DE,作FH⊥BC于H,如图,根据等边三角形的性质得∠B=60°,过D点作DE′⊥AB,则BE′=BD=2,则点E′与点E重合,所以∠BDE=30°,DE=BE=2,接着证明△DPE≌△FDH得到FH=DE=2,于是可判断点F运动的路径为一条线段,此线段到BC的距离为2,当点P在E点时,作等边三角形DEF1,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=8,所以F1F2=DQ=8,于是得到当点P从点E运动到点A时,点F运动的路径长为8
    解:连结DE,作FH⊥BC于H,如图,
    ∵△ABC为等边三角形,
    ∴∠B=60°,
    过D点作DE′⊥AB,则BE′=BD=2,
    ∴点E′与点E重合,
    ∴∠BDE=30°,DE=BE=2
    ∵△DPF为等边三角形,
    ∴∠PDF=60°,DP=DF,
    ∴∠EDP+∠HDF=90°,
    ∵∠HDF+∠DFH=90°,
    ∴∠EDP=∠DFH,
    在△DPE和△FDH中,

    ∴△DPE≌△FDH,
    ∴FH=DE=2,
    ∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为2,
    当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,
    当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=10﹣2=8,
    ∴F1F2=DQ=8,
    ∴当点P从点E运动到点A时,点F运动的路径长为8.

    点评: 本题考查了轨迹:点运动的路径叫点运动的轨迹,利用代数或几何方法确定点运动的规律.也考查了等边三角形的性质和三角形全等的判定与性质.

    6.如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(C点与A点不重合),CF⊥CD交AB于点F,DE⊥CD交AB于点E,G为半圆弧上的中点.当点C在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y与x的函数关系的图象大致是(  )

      A. B. C. D.

    考点: 动点问题的函数图象.
    分析: 根据弦CD为定长可以知道无论点C怎么运动弦CD的弦心距为定值,据此可以得到函数的图象.
    解答: 解:作OH⊥CD于点H,
    ∴H为CD的中点,
    ∵CF⊥CD交AB于F,DE⊥CD交AB于E,
    ∴OH为直角梯形的中位线,
    ∵弦CD为定长,
    ∴CF+DE=y为定值,
    故选B.

    点评: 本题考查了动点问题的函数图象,解题的关键是化动为静.
     
    7. 如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是(  )

      A. B. C. D.

    考点: 动点问题的函数图象..
    分析: 设运动员C的速度为v,则运动了t的路程为vt,设∠BOC=α,当点C从运动到M时,当点C从M运动到A时,分别求出d与t之间的关系即可进行判断.
    解答: 解:设运动员C的速度为v,则运动了t的路程为vt,
    设∠BOC=α,
    当点C从运动到M时,
    ∵vt==,
    ∴α=,
    在直角三角形中,∵d=50sinα=50sin=50sint,
    ∴d与t之间的关系d=50sint,
    当点C从M运动到A时,d与t之间的关系d=50sin(180﹣t),
    故选C.
    点评: 本题考查的是动点问题的函数图象,熟知圆的特点是解答此题的关键.

    8.如图,,,,AB=8,以为边长的正方形DEFG的一边GD在直线AB上,且点D与点A重合。现将正方形DEFG沿A→B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与⊿ABC的重合部分的面积与运动时间之间的函数关系图像大致是( )









    考点: 函数图像运动型问题
    分析: 【解析】

    (1)AD=t,DM=,S=(0

    相关试卷

    中考数学一轮复习课时练习专题6动态探究问题(含答案):

    这是一份中考数学一轮复习课时练习专题6动态探究问题(含答案),共9页。试卷主要包含了已知等内容,欢迎下载使用。

    中考数学二轮复习专题《动态几何问题》练习(含答案):

    这是一份中考数学二轮复习专题《动态几何问题》练习(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题34 动态问题(原创版):

    这是一份初中数学中考复习 专题34 动态问题(原创版),共10页。试卷主要包含了动点问题常见的四种类型,解决动态问题一般步骤等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map