终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    山东省临清市高中数学全套教学案数学必修3:3.1.2概率的意义(教、学案)

    立即下载
    加入资料篮
    山东省临清市高中数学全套教学案数学必修3:3.1.2概率的意义(教、学案)第1页
    山东省临清市高中数学全套教学案数学必修3:3.1.2概率的意义(教、学案)第2页
    山东省临清市高中数学全套教学案数学必修3:3.1.2概率的意义(教、学案)第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标A必修33.1.2概率的意义导学案

    展开

    这是一份高中数学人教版新课标A必修33.1.2概率的意义导学案,共9页。学案主要包含了教材分析,教学目标,教学重点难点,学情分析,教学方法,课前准备,课时安排,教学过程等内容,欢迎下载使用。
                         临清三中数学组  编写人:张福忠  3.1.2概率的意义 一、教材分析   1)正确理解概率的含义。在概率定义的基础上,从以下两个方面帮助学生正确理解概率的含义,澄清日常生活中遇到的一些错误认识:试验:通过抛掷一枚质地均匀的硬币,解释正面朝上的概率为0.5含义,纠正连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上的错误认识;通过从盒子中摸球的试验,解释中奖概率为 的含义,纠正如果中奖率为 ,那么买1000张彩票一定能中奖的错误认识。随机性与规律性:解释每次试验结果的随机性,多次试验结果的规律性,进一步说明频率与概率之间的区别。2)了解概率在实际问题中的应用。概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。可以从正反两个方面举例让学生进行判断。概率与决策的关系:介绍统计中极大似然法思想的概率解释,并清楚它的概率基础:在一次试验中,概率大的事件发生的可能性大。这种思想是风险与决策中经常使用的。概率与预报的关系:通过天气预报、地震预报、股票预报等实例,让学生了解概率在预报中的作用。二、教学目标1从频率稳定性的角度,了解概率的意义.2学生经历试验,统计,分析,归纳,总结,进而了解并感受概率的定义的过程,引导学生从数学的视角,观察客观世界;用数学的思维,思考客观世界;以数学的语言,描述客观世界.3学生经历试验,整理,分析,归纳,确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准,新颖,独特的思维方式所震撼..三、教学重点难点重点:概率的正确理解。难点:用概率知识解决现实生活中的具体问题。四、学情分析    回忆上节课有关概率的定义,通过试验解释概率的含义,纠正日常生活中的一些错误认识,介绍概率与公平性、概率与决策、概率与预报方面的实例。五、教学方法1.举例法2.学案导学:见后面的学案。3新授课教学基本环节预习检查、总结疑惑情境导入、展示目标合作探究、精讲点拨反思总结、当堂检测学案、布置预习六、课前准备1.学生的学习准备:预习课本,初步把握概率的定义2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。七、课时安排:1课时八、教学过程()预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。(二)景导入、展示目标1在条件S下进行n次重复实验,事件A出现的频数和频率的含义分别如何?2.概率是反映随机事件发生的可能性大小的一个数据,概率与频率之间有什么联系和区别?它们的取值范围如何? 联系:概率是频率的稳定值;区别:频率具有随机性,概率是一个确定的数;范围:[01].3.大千世界充满了随机事件,生活中处处有概率.利用概率的理论意义,对各种实际问题作出合理解释和正确决策,是我们学习概率的一个基本目的. (三)合作探究、精讲点拨。1.概率的正确理解 思考1:连续两次抛掷一枚硬币,可能会出现哪几种结果? 两次正面朝上两次反面朝上一次正面朝上,一次反面朝上. 思考2:抛掷枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗? 探究:试验:全班同学各取一枚同样的硬币,连续抛掷两次,观察它落地后的朝向.将全班同学的试验结果汇总,计算三种结果发生的频率.你有什么发现?随着试验次数的增多,三种结果发生的频率会有什么变化规律? 两次正面朝上的频率约为0.25,两次反面朝上 的频率约为0.25,一次正面朝上,一次反面朝上 的频率约为0.5. 思考3:围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由. 不一定.摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑子,也可能没有一次摸到黑子,摸到黑子的概率为1-0.9100.6513思考4:如果某种彩票的中奖概率为 0.001,那么买1000张这种彩票一定能中奖吗?为什么?不一定,理由同上. 买1 000张这种彩票的中奖概率约为1-0.99910000.632,即有63.2%的可能性中奖,但不能肯定中奖. 2.游戏的公平性在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的? 裁判员拿出一个抽签器,它是-个像大硬币似的均匀塑料圆板,一面是红圈,一面是绿圈,然后随意指定一名运动员,要他猜上抛的抽签器落到球台上时,是红圈那面朝上还是绿圈那面朝上。如果他猜对了,就由他先发球,否则,由另一方先发球. 两个运动员取得发球权的概率都是0.5.探究:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大? (图参考课本115页)不公平,因为各班被选中的概率不全相等,七班被选中的概率最大.   3.决策中的概率思想 思考:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?(参考课本115页) 这枚骰子的质地不均匀,标有6点的那面比较重,会使出现1点的概率最大,更有可能连续10次都出现1点. 如果这枚骰子的质地均匀,那么抛掷一次出现1点的概率为,连续10次都出现1点的概率为 这是一个小概率事件,几乎不可能发生.如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么使得样本出现的可能性最大可以作为决策的准则,这种判断问题的方法称为极大似然法.4.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释中哪一个能代表气象局的观点?明天本地有70%的区域下雨,30%的区域不下雨?   明天本地下雨的机会是70%降水概率降水区域;明天本地下雨的可能性为70%. 答案参考课本117页思考:天气预报说昨天的降水概率为 90%,结果昨天根本没下雨,能否认为这次天气预报不准确?如何根据频率与概率的关系判断这个天气预报是否正确?  不能,概率为90%的事件发生的可能性很大,但明天下雨是随即事件,也有可能不发生.收集近50年同日的天气情况,考察这一天下雨的频率是否为90%左右. 5试验与发现奥地利遗传学家孟德尔从1856年开始用豌豆作试验,他把黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的.第二年,他把第一年收获的黄色豌豆再种下,收获的豌豆既有黄色的又有绿色的.同样他把圆形和皱皮豌豆杂交,第一年收获的豌豆都是圆形的.第二年,他把第一年收获的圆形豌豆再种下,收获的豌豆却既有圆形豌豆,又有皱皮豌豆.类似地,他把长茎的豌豆与短茎的豌豆杂交,第一年长出来的都是长茎的豌豆. 第二年,他把这种杂交长茎豌豆再种下,得到的却既有长茎豌豆,又有短茎豌豆.试验的具体数据如下:豌豆杂交试验的子二代结果 性状显性显性隐性隐性子叶的颜色黄色6022绿色2001种子的性状圆形5474皱皮1850茎的高度长茎787短茎277          你能从这些数据中发现什么规律吗?孟德尔的豌豆实验表明,外表完全相同的豌豆会长出不同的后代,并且每次试验的显性与隐性之比都接近3︰1,这种现象是偶然的,还是必然的?我们希望用概率思想作出合理解释. 6遗传机理中的统计规律在遗传学中有下列原理:(1)纯黄色和纯绿色的豌豆均由两个特征因子组成,下一代是从父母辈中各随机地选取一个特征组成自己的两个特征.(2)用符号AA代表纯黄色豌豆的两个特征,符号BB代表纯绿色豌豆的两个特征.(3)当这两种豌豆杂交时,第一年收获的豌豆特征为:AB.把第一代杂交豌豆再种下时,第二年收获的豌豆特征为: AA,AB,BB.(4)对于豌豆的颜色来说.A是显性因子,B是隐性因子.当显性因子与隐性因子组合时,表现显性因子的特性,即AA,AB都呈黄色;当两个隐性因子组合时才表现隐性因子的特性,即BB呈绿色.在第二代中AA,AB,BB出现的概率分别是多少?黄色豌豆与绿色豌豆的数量比约为多少?P(AA)=0.5×0.5=0.25   p(BB)=0.5×0.5=0.25P(AB)=1-0.25-0.25=0.5黄色豌豆(AA,AB)︰绿色豌豆(BB)3︰1 (四)反思总结,当堂检测。教师组织学生反思总结本节课的主要内容,并进行当堂检测。设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)(五)发导学案、布置预习。我们已经学习了概率的意义,那么,概率还具有那些性质呢?在下一节课我们一起来学习概率的基本性质。这节课后大家可以先预习这一部分,如何得出恰当的结论的。并完成本节的课后练习及课后延伸拓展作业。设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。九、板书设计 1.概率的正确理解2.游戏的公平性3.决策中的概率思想4.天气预报的概率解释5试验与发现 十、教学反思本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。       1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.2.孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴. 3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.     在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!十一、学案设计(见下页)                                                                    临清三中数学组  编写人:张福忠   3.1.2概率的意义 课前预习学案一、预习目标1.从频率稳定性的角度,了解概率的意义.2怎样从数量上刻画一个随机事件发生的可能性的大小.二、预习内容知识生成1.概率的正确理解:概率是描述随机事件发生的             的度量,事件A的概率P(A)越大,其发生的可能性就越     概率P(A)越小,事件A发生的可能性就越       .2.概率的实际应用知道随机事件的概率的大小,有利我们做出正确的         ,还可以         某些决策或规则的正确性与公平性.3.游戏的公平性应使参与游戏的各方的机会为等可能的, 即各方的        相等,根据这一要求确定游戏规则才是            .4.决策中的概率思想以使得样本出现的            最大为决策的准则.5.天气预报的概率解释降水的概率是指降水的这个随机事件出现的           ,而不是指某些区域有降水或能不能降水.6.遗传机理中的统计规律: (看书P118)三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容        课内探究学案一、学习目标1.概率的正确理解;2.概率思想的实际应用.二、学习重难点:重点:概率的正确理解难点:用概率知识解决现实生活中的具体问题。、学习过程1、概率的正确理解问题1:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两 次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。你认为这种想法正确吗?  试验:让我们做一个抛掷硬币的试验,观察它落地时的情况。每人各取一枚同样的硬币,连续两次抛掷,观察它落地后的朝向,并记录下结果,填入下表。重复上面的过程10次,把全班同学试验结果汇总,计算三种结果发生的频率。姓名试验次数两次正面朝上的次数、比例两次反面朝上的次数、比例一次正面朝上,一次反面朝上的次数、比例      事实上, 两次均反面朝上的概率为     两次均反面朝上的概率也为    正面朝上、反面朝上各一次的概率为     问题2:有人说,中奖率为 1/1000的彩票,1000张一定中奖,这种理解对吗?  2.游戏的公平性在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的? 探究:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大?  3.决策中的概率思想思考:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?(参考课本115页)  4.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释中哪一个能代表气象局的观点?明天本地有70%的区域下雨,30%的区域不下雨?明天本地下雨的机会是70%  5试验与发现你能从课本上这些数据中发现什么规律吗?  6遗传机理中的统计规律  四、反思总结1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.2.孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养    五、当堂检测1.生活中,我们经常听到这样的议论:天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。学了概率后,你能给出解释吗?2. 围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.3.一个骰子掷一次得到2的概率是1/6,这说明一个骰子掷6次会出现一次2,这种说法对吗?说说你的理由。4.某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?     参考答案:1. 天气预报的降水是一个随机事件,概率为90%指明了降水这个随机事件发生的概率,我们知道:在一次试验中,概率为90%的事件也可能不出现,因此,昨天没有下雨并不说明昨天的降水概率为90%的天气预报是错误的。2. 不一定.摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑子,也可能没有一次摸到黑子,摸到黑子的概率为1-0.9100.65133. 这种说法是错误的,因为掷骰子一次得到2是一个随机事件,在依次实验中他可能发生也可能不发生,掷6次骰子就是做6次实验,每次实验的结果都是随机的,可能出现2也可能不出现2,所以6次实验中有可能一次2都不出现,也可能出现1次,2次。。。。6次。4. 此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;同理, 中10环的概率约为0.2.   课后练习与提高 1.一对夫妇前三胎生的都是女孩,则第四胎生一个男孩的概率是                    A.0         B0.5        C.0.25       D.12.某气象局预报说,明天本地降雪概率为90%,则下列解释中正确的是       A.明天本地有90%的区域下雪,10%的区域不下雪B.明天下雪的可能性是90%C.明天本地全天有90%的时间下雪,10%的时间不下雪D.明天本地一定下雪3.某位同学在做四选一的12道选择题时,他全不会做,只好在各题中随机选一个答案,若每道题选对得5分,选错得0分,你认为他大约得多少分               A.30分      B.0分      C.15分     D.20分4.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是       5.在一个试验中。一种血清被注射到500只豚鼠体内。最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞。被注射这种血清之后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染。根据试验结果,估计具有下列类型的细胞的豚鼠被这种血清感染的概率:(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞。    

    相关学案

    人教版新课标A必修33.1.1随机事件的概率学案:

    这是一份人教版新课标A必修33.1.1随机事件的概率学案,共8页。学案主要包含了教材分析,教学目标,教学重点难点,学情分析,教学方法,课前准备,课时安排,教学过程等内容,欢迎下载使用。

    数学2.2 平面向量的线性运算导学案:

    这是一份数学2.2 平面向量的线性运算导学案

    2021学年2.2 平面向量的线性运算学案:

    这是一份2021学年2.2 平面向量的线性运算学案

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map