所属成套资源:2022年中考数学一轮考点课时练习全套(含答案)
2022年中考数学一轮考点课时练习13《全等三角形》(含答案)
展开这是一份2022年中考数学一轮考点课时练习13《全等三角形》(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年中考数学一轮考点课时练习13
《全等三角形》
一、选择题
1.下列说法正确的有( )
①两个图形全等,它们的形状相同;
②两个图形全等,它们的大小相同;
③面积相等的两个图形全等;
④周长相等的两个图形全等.
A.1个 B.2个 C.3个 D.4个
2.下列说法:
①用一张像底冲洗出来的2张1寸相片是全等形;
②所有的正三角形是全等形;
③全等形的周长相等;
④面积相等的图形一定是全等形.
其中正确的是( )
A.①②③ B.①③④ C.①③ D.③
3.边长都为整数的△ABC≌△DEF,AB=2,BC=4.若△DEF周长为偶数,则DF长为( )
A.3 B.4 C.5 D.3或4或5
4.如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的( )
A.SSS B.ASA C.AAS D.SAS
5.如图,要测量河中礁石A离岸边B点的距离,采取的方法如下:顺着河岸的方向任作一条线段BC,作∠CBA'=∠CBA,∠BCA'=∠BCA.可得△A'BC≌△ABC,所以A'B=AB,所以测量A'B的长即可得AB的长.判定图中两个三角形全等的理由是( )
A.SAS B.ASA C.SSS D.AAS
6.如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD于F,图中全等三角形有( )
A.3对 B.5对 C.6对 D.7对
7.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是( )。
A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定
8.如图,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H.若∠ABC=60°.则下面结论:①∠ABP=30°;②∠APC=60°;③PB=2PH;④∠APH=∠BPC.其中正确结论个数是( )
A.1个 B.2个 C.3个 D.4个
二、填空题
9.如图所示,沿AM折叠,使D点落在BC上的N点处,若AD=7cm,DM=5 cm,∠DAM=30°,则AN= cm,NM= cm,∠NAM= .
10.如图,△ABC≌△FDE,若A点坐标为(a,1),BC∥x轴,B点坐标为(b,﹣3),D、E两点在y轴上,则F点到y轴的距离为 .
11.如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳).在图中,只要量出CD的长,就能求出工件内槽的宽,依据是 .
12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是 .
13.如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,OD⊥BC于D,如果AB=25cm,BC=20cm,AC=15cm,且S△ABC=150cm2,那么OD= cm.
14.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是 .
三、解答题
15.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.
求证:AF平分∠BAC.
16.如图,△ABC和△AED为等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,连接BE、CD交于点O,连接AO
求证:
(1)△BAE≌△CAD;
(2)OA平分∠BOD.
17.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.
(1)求证:①AB=AD;②CD平分∠ACE.
(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.
18.如图,在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.
(1)求证:∠EFA=90°﹣∠B;
(2)若∠B=60°,求证:EF=DF.
参考答案
1.答案为:B
2.答案为:C.
3.答案为:B.
4.答案为:D
5.答案为:B
6.答案为:D
7.答案为:C
8.答案为:C
9.答案为:7,5,30°.
10.答案为:4.
11.答案为:根据SAS证明△AOB≌△COD
12.答案为:AC=BC.
13.答案为:5.
14.答案为:①②④.
15.证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).
∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.
∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.
∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),
在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),
∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.
16.证明:(1)过点A分别作AF⊥BE于F,AG⊥CD于G.
如图所示:
∵∠BAC=∠DAE,
∴∠BAE=∠CAD,
在△BAE和△CAD中,
,
∴△BAE≌△CAD(SAS),
(2)连接AO并延长交CE为点H,
∵△BAE≌△CAD,
∴BE=CD,
∴AF=AG,
∵AF⊥BE于F,AG⊥CD于G,
∴OA平分∠BOD,
∴∠AOD=∠AOB,
∵∠COH=∠AOD,∠EOH=∠AOB,
∴∠COH=∠EOH.
∴OA平分∠BOD.
17.解:(1)①∵AD∥BE,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD;
②∵AD∥BE,
∴∠ADC=∠DCE,
由①知AB=AD,
又∵AB=AC,
∴AC=AD,
∴∠ACD=∠ADC,
∴∠ACD=∠DCE,
∴CD平分∠ACE;
(2)∠BDC=∠BAC,
∵BD、CD分别平分∠ABE,∠ACE,
∴∠DBC=∠ABC,∠DCE=∠ACE,
∵∠BDC+∠DBC=∠DCE,
∴∠BDC+∠ABC=∠ACE,
∵∠BAC+∠ABC=∠ACE,
∴∠BDC+∠ABC=∠ABC+∠BAC,
∴∠BDC=∠BAC.
18.证明:(1)∵∠BAC+∠BCA=180°﹣∠B,
又∵AD、CE分别是∠BAC、∠BCA的平分线,
∴∠FAC=∠BAC,∠FCA=∠BCA,
∴∠FAC+∠FCA=×(180°﹣∠B)=90°﹣∠B,
∵∠EFA=∠FAC+∠FCA,
∴∠EFA=90°﹣∠B.
(2)如图,过点F作FG⊥BC于G,作FH⊥AB于H,作FM⊥AC于M.
∵AD、CE分别是∠BAC、∠BCA的平分线,
∴FG=FH=FM,
∵∠EFH+∠DFH=120°,
∠DFG+∠DFH=360°﹣90°×2﹣60°=120°,
∴∠EFH=∠DFG,
在△EFH和△DFG中,
,
∴△EFH≌△DFG(AAS),
∴EF=DF.
相关试卷
这是一份2024年中考数学一轮复习《全等三角形》考点课时精炼(含答案),共10页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习课时练习第18课时 全等三角形 (含答案),共14页。试卷主要包含了 已知, 0等内容,欢迎下载使用。
这是一份中考数学一轮复习考点过关练习考点13 相交线与平行线 (含答案),共20页。试卷主要包含了相交线,平行线等内容,欢迎下载使用。