2021年北师大版数学九年级上册《特殊平行四边形》期末复习卷(含答案)
展开这是一份2021年北师大版数学九年级上册《特殊平行四边形》期末复习卷(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021年北师大版数学九年级上册
《特殊平行四边形》期末复习卷
一、选择题
1.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是( )
A. B. C. D.
2.能判定一个四边形是菱形的条件是( )
A.对角线互相平分且相等
B.对角线互相垂直且相等
C.对角线互相垂直且对角相等
D.对角线互相垂直,且一条对角线平分一组对角
3.检查一个门框是否为矩形,下列方法中正确的是( )
A.测量两条对角线,是否相等
B.测量两条对角线,是否互相平分
C.测量门框的三个角,是否都是直角
D.测量两条对角线,是否互相垂直
4.如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.
有以下几条几何性质:
①矩形的四个角都是直角;②矩形的对角线互相平分;③等腰三角形的“三线合一”.
小明的作法依据是( )
A.①② B.①③ C.②③ D.①②③
5.下列叙述,错误的是( )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直平分的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线相等的四边形是矩形
6.已知四边形ABCD是平行四边形,再从①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( )
A.选①② B.选②③ C.选①③ D.选②④
7.如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于( )
A.4.5 B.5 C.6 D.9
8.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是( )
A. B.6 C.4 D.5
9.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有( )
A.2对 B.3对 C.4对 D.5对
10.如图,在菱形ABCD中,AB=13,对角线AC=10,若过点A作AE⊥BC,垂足为E,
则AE的长为( )
A.8 B. C. D.
11.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是( )
A.4≥x>2.4 B.4≥x≥2.4 C.4>x>2.4 D.4>x≥2.4
12.如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是( )
A.2 B.2 C.2 D.
二、填空题
13.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ,使ABCD成为菱形(只需添加一个即可)
14.如图是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是_____
15.如图,点E是矩形ABCD内任一点,若AB=3,BC=4.则图中阴影部分的面积为 .
16.如图,在正方形ABCD中,以AB为边在正方形内作等边△ABE,连接DE,CE,则∠CED度数为 .
17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于 .
18.如图,以直角三角形ABC的斜边BC为边在三角形ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=6,则AC= .
三、解答题
19.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于H,连接OH.
求证:∠DHO=∠DCO.
20.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.
(1)求证:△ABD≌△CAE.
(2)连结DE,线段DE与AB之间有怎样的位置关系和数量关系?请证明你的结论.
21.如图,E、F、G、H分别是边AB、BC、CD、DA的中点.当BD、AC满足什么条件时,四边形EFGH是正方形.
22.如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD垂足分别是求M、N
(1)求证:AE=MN;
(2)若AE=2,∠DAE=30°,求正方形的边长.
23.如图,在▱ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.
(1)求证:四边形DEBF是菱形;
(2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为 ,并在图上标出此时点P的位置.
24.如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,AC与EF交于点H.
(1)求证:△ABE≌△AGF;
(2)若AB=6,BC=8,求△ABE的面积.
25.如图1,2,四边表ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F。
⑴如图1,当点E在AB边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是 ;
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ;
③请证明你的上述两猜想。
⑵如图2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,
进而猜想此时DE与EF有怎样的数量关系。
参考答案
1.C.
2.C
3.C
4.C.
5.D.
6.B
7.A.
8.B
9.C
10.C.
11.D
12.A
13.答案为:OA=OC.
14.答案为:∠2=∠3
15.答案为:6;
16.答案为:150°.
17.答案为:75/16;
18.答案为:16
19.证明:∵四边形ABCD是菱形,
∴OD=OB,∠COD=90°.
∵DH⊥AB于H,
∴∠DHB=90°.
在Rt△DHB中,OH=OB,
∴∠OHB=∠OBH.
又∵AB∥CD,
∴∠OBH=∠ODC.
∴∠OHB=∠ODC.
在Rt△COD中,∠ODC+∠OCD=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO.
20. (1)证明:因为AB=AC,
所以∠B=∠ACB,
又因为AD是BC边上的中线,
所以AD⊥BC,即∠ADB=90°.
因为AE∥BC,所以∠EAC=∠ACB,
所以∠B=∠EAC.
因为CE⊥AE,所以∠CEA=90°,
所以∠ADB=∠CEA.
又AB=CA,
所以△ABD≌△CAE(A.A.S.).
(2)解:AB∥DE且AB=DE.
证明:由△ABD≌△CAE可得AE=BD,
又AE∥BD,所以四边形ABDE是平行四边形,所以AB∥DE且AB=DE.
21.解:当AC=BD且AC⊥BD时,四边形EFGH是正方形.
理由如下:
在△ABC中,E、F分别是边AB、BC中点,所以EF∥AC,且EF=AC,
同理有GH∥AC,且GH=AC,
∴EF∥GH且EF=GH,故四边形EFGH是平行四边形.
EH∥BD且EH=BD,若AC=BD,则有EH=EF,
又因为四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
即:当AC=BD且AC⊥BD时,四边形EFGH是正方形.
22.(1)证明:连接EC.
∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,
∴∠NCM=∠CME=∠CNE=90°,
∴四边形EMCN为矩形.
∴MN=CE.
又∵BD为正方形ABCD的对角线,
∴∠ABE=∠CBE.
在△ABE和△CBE中
∵,
∴△ABE≌△CBE(SAS).
∴AE=EC.
∴AE=MN.
(2)解:过点E作EF⊥AD于点F,
∵AE=2,∠DAE=30°,
∴EF=AE=1,AF=AE•cos30°=2×=.
∵BD是正方形ABCD的对角线,
∴∠EDF=45°,∴DF=EF=1,
∴AD=AF+DF=+1,即正方形的边长为+1.
23.(1)证明:∵平行四边形ABCD中,AD∥BC,
∴∠DBC=∠ADB=90°.
∵△ABD中,∠ADB=90°,E时AB的中点,
∴DE=AB=AE=BE.
同理,BF=DF,
∵平行四边形ABCD中,AB=CD,
∴DE=BE=BF=DF,
∴四边形DEBF是菱形;
(2)解:连接BF,
∵菱形DEBF中,∠DEB=120°,
∴∠EF=60°,
∴△BEF是等边三角形,
∵M是BF的中点,
∴EM⊥BF.
则EM=2.
即PF+PM的最小值是2.
24.证明:
25.解:⑴①DE=EF;②NE=BF。
③证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,
∴DN=EB
∵BF平分∠CBM,AN=AE,∴∠DNE=∠EBF=90°+45°=135°
∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF
∴△DNE≌△EBF
∴ DE=EF,NE=BF
⑵在DA边上截取DN=EB(或截取AN=AE),连结NE,点N就使得NE=BF成立(图略)
此时,DE=EF.
相关试卷
这是一份浙教版八年级数学下册《特殊平行四边形》期末复习卷(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021年北师大版数学九年级上册《图形的相似》期末复习卷(含答案),共10页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2021年北师大版数学九年级上册《投影与视图》期末复习卷(含答案),共8页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。