高中数学人教版高考复习复数专题
展开
这是一份高中数学人教版高考复习复数专题,共3页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
复数 训练目标(1)熟记复数的有关概念;(2)掌握复数代数形式的四则运算;(3)理解并能简单应用复数的几何意义.训练题型(1)复数及其相关概念的应用;(2)复数的计算;(3)复数的模与共轭复数的求解与应用;(4)复数的几何意义的应用.解题策略(1)正确理解复数的有关概念,会利用复数相等列方程;(2)复数除法的运算是难点,应重点掌握;(3)复数的模的问题常与两点间的距离相联系.一、选择题1.复数-的实部与虚部的和为( )A.- B.1C. D.2.(2016·全国甲卷)已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是( )A.(-3,1) B.(-1,3)C.(1,+∞) D.(-∞,-3)3.i为虚数单位,若(+i)z=-i,则|z|等于( )A.1 B.C. D.4.若复数z=2-i,则+等于( )A.2-i B.2+iC.4+2i D.6+3i5.(2016·长沙模拟)已知集合M=,i是虚数单位,Z为整数集,则集合Z∩M中的元素个数是( )A.3 B.2C.1 D.06.满足=i(i为虚数单位)的复数z等于( )A.+i B.-iC.-+i D.--i7.(2016·郑州调研)复数z1,z2满足z1=m+(4-m2)i,z2=2cos θ+(λ+3sin θ)i(m,λ,θ∈R),并且z1=z2,则λ的取值范围是( )A.[-1,1] B.[-,1]C.[-,7] D.[,7]8.(2016·贵州遵义模拟)复数z=4i2 016-(其中i为虚数单位)在复平面内对应的点在( )A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题9.(2016·天津)已知a,b∈R,i是虚数单位,若(1+i)·(1-bi)=a,则的值为________.10.(2016·山东省实验中学诊断)在复平面内,复数对应的点到直线y=x+1的距离是________.11.设f(n)=()n+()n(n∈N*),则集合{f(n)}中元素的个数为________.12.对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是________.(填序号)①|z-|=2y; ②z2=x2+y2;③|z-|≥2x; ④|z|≤|x|+|y|.
答案精析 1.D 2.A 3.A 4.D 5.B 6.B7.C [由复数相等的充要条件可得化简得4-4cos2θ=λ+3sin θ,由此可得λ=-4cos2θ-3sin θ+4=-4(1-sin2θ)-3sin θ+4=4sin2θ-3sin θ=4(sin θ-)2-,因为sin θ∈[-1,1],所以4sin2θ-3sin θ∈[-,7].]8.D 9.210.解析 ==1+i,所以复数对应的点为(1,1),点(1,1)到直线y=x+1的距离为=.11.3解析 因为f(n)=()n+()n=in+(-i)n,所以f(1)=0,f(2)=-2,f(3)=0,f(4)=2,f(5)=0=f(1),…,故集合{f(n)}中共有3个元素.12.④解析 对于①,∵=x-yi(x,y∈R),|z-|=|x+yi-x+yi|=|2yi|=|2y|,∴①不正确;对于②,z2=x2-y2+2xyi,故不正确;对于③,∵|z-|=|2y|≥2x不一定成立,∴③不正确;对于④,|z|=≤|x|+|y|,故④正确.
相关试卷
这是一份高中数学高考专题33 算法、复数、推理与证明(原卷版),共51页。
这是一份高中数学高考专题33 算法、复数、推理与证明(解析版),共88页。
这是一份高中数学高考专题31 复数(原卷版),共3页。试卷主要包含了考查复数的模,考查复数的运算,考查复数的概念,考查复数的点表示,考查复数差的模的几何意义等内容,欢迎下载使用。