浙教版九年级下册2.2 切线长定理教案设计
展开2.2切线长定理
1.了解切线长的定义,掌握切线长定理,并利用它进行有关的计算;在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。
2.经历画图、度量、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,培养学生有条理地、清晰地阐述自己的观点的能力。
3.了解数学的价值,对数学有好奇心与求知欲,在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
教学重点
切线长定理
教学难点
应用切线长定理解决问题
一、新课导入
同学们,请看这是什么玩具?(悠悠球)对,这是大家非常喜爱的一种玩具。(教师演示一次) 可是,大家在玩悠悠球时是否想到过它的转动过程中还包含着数学知识呢?是什么知识呢?我们来看一下它的构造。(拆开球,出示球的剖面)这是悠悠球在转动的一瞬间的剖面,从中你能抽象出什么样的数学图形?(球的整体和中心轴可分别抽象成圆形,被拉直的线绳可抽象成线段。)
这些图形位置关系怎样?
(两圆为同心圆,线段所在直线和小圆相切)[在这两问中,如果学生想不到球的整体时,这个圆可以不提]
线段的两个端点和小圆的位置关系怎样?(一个是切点在小圆上,一个在小圆外)
我们可以看出,球与手的距离就决定于这条线段的长度。在几何中,我们把满足上述特征的线段的长叫做点到圆的切线长,这节课我们就来研究切线长的有关知识。
二、探索新知
(一)、切线长定义
1、板书定义:在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长.
2、剖析定义:(1)找出中心词,把定义进行缩句。(线段的长叫做切线长)
(2)定义中的“线段”具有什么特征?
① 在圆的切线上;②两个端点一个是切点,一个是圆外已知点。
3、在图形中辨别:(1)已知:如图1,PC和⊙O相切于点A ,点P到⊙O的切线长可以用哪一条线段的长来表示? (线段PA)
C
图1 图2
(2)已知:如图2,PA和PB分别与⊙O相切于点A、B ,点P到⊙O的切线长可以用哪一条线段的长来表示?(线段PA或线段PB)
(3)如图2,思考:点P到⊙O的切线长可以用三条或三条以上不同的线段的长来表示吗?这样的线段最多可以有几条?为什么?
(4)既然点P到⊙O的切线长可以用两条不同的线段的长来表示,那么这两条线段之间一定存在着某种关系,是什么关系呢?我们来探索一下,出示探索问题1,从而进入定理教学。
(二)切线长定理:
探索问题:从⊙O外一点P引⊙O的两条切线,切点分别为A、B,那么线段PA和PB之间有何关系?
探索步骤:
(1)根据条件画出图形;
(2)度量线段PA和PB的长度;
(3)猜想:线段PA和PB之间的关系;
(4)寻找证明猜想的途径;
(5)在图中还能得出哪些结论?并把它们归类。
(6)上述各结论中,你想把哪个结论作为切线长的性质?请说明理由。
由(5)得:
线段相等:PA=PB;OA=OB;
角相等:∠APO=∠BPO;∠AOP=∠BOP;
垂直关系:OA⊥PA;OB⊥PB;
三角形全等:△OAP≌△OBP.
由(6)得出定理:
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
剖析定理:
(1)、指出定理的题设和结论;
(2)用符号语言表示定理:
∵PA、PB分别是⊙O的切线,点A、B分别为切点,(PA、PB分别与⊙O相切于点A、B)
∴PA=PB,∠APO=∠BPO.
解决实际问题:在我们日常生活中有很多物体呈圆形,例如花盆边沿、水杯口等,有时我们需要知道圆形物体的半径,那么利用本节所学的切线长定理,如何解决这个问题呢?
小制作:名称:圆的半径测量仪
材料:两把刻度尺
用途:测量水杯口的半径
过程:
(1)出示问题,学生尝试;
(2)遇到困难,设法解决;
(3)设计方案,说明道理;
(4)完成制作,实物测量。
三、归纳小结
1.切线长定义: 线段相等:
角 相 等:
2.切线长定理: 垂直关系:
三角形全等:
请完成本课时对应练习!
初中数学浙教版九年级下册2.2 切线长定理教案: 这是一份初中数学浙教版九年级下册2.2 切线长定理教案,共5页。
初中数学北师大版九年级下册第三章 圆7 切线长定理教案: 这是一份初中数学北师大版九年级下册第三章 圆7 切线长定理教案,共4页。
初中数学浙教版九年级下册2.1 直线和圆的位置关系教案及反思: 这是一份初中数学浙教版九年级下册2.1 直线和圆的位置关系教案及反思,共4页。教案主要包含了新课导入,探索新知,归纳小结等内容,欢迎下载使用。