终身会员
搜索
    上传资料 赚现金

    第12讲-函数与数学模型(解析版)学案

    立即下载
    加入资料篮
    第12讲-函数与数学模型(解析版)学案第1页
    第12讲-函数与数学模型(解析版)学案第2页
    第12讲-函数与数学模型(解析版)学案第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第12讲-函数与数学模型(解析版)学案

    展开

    这是一份第12讲-函数与数学模型(解析版)学案,共14页。
    第12讲-函数与数学模型
    一、 考情分析
    1.理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.在实际情境中,会选择合适的函数类型刻画现实问题的变化规律;
    2.结合现实情境中的具体问题,利用计算工具,比较对数函数、一元一次函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义;
    3.收集、阅读一些现实生活、生产实际或者经济领域中的数学模型,体会人们是如何借助函数刻画实际问题的,感悟数学模型中参数的现实意义.
    二、 知识梳理
    1.指数、对数、幂函数模型性质比较
      函数
    性质   
    y=ax
    (a>1)
    y=logax
    (a>1)
    y=xn
    (n>0)
    在(0,+∞)
    上的增减性
    单调递增
    单调递增
    单调递增
    增长速度
    越来越快
    越来越慢
    相对平稳
    图象的变化
    随x的增大逐渐表现为与y轴平行
    随x的增大逐渐表现为与x轴平行
    随n值变化
    而各有不同
    2.几种常见的函数模型
    函数模型
    函数解析式
    一次函数模型
    f(x)=ax+b(a、b为常数,a≠0)
    二次函数模型
    f(x)=ax2+bx+c(a,b,c为常数,a≠0)
    与指数函数
    相关模型
    f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)
    与对数函数
    相关模型
    f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0)
    与幂函数
    相关模型
    f(x)=axn+b(a,b,n为常数,a≠0)
    [微点提醒]
    1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.
    2.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.
    3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.
    三、 经典例题
    考点一 利用函数的图象刻画实际问题
    【例1】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

    根据该折线图,下列结论错误的是(  )
    A.月接待游客量逐月增加
    B.年接待游客量逐年增加
    C.各年的月接待游客量高峰期大致在7,8月
    D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
    【解析】 由题图可知,2014年8月到9月的月接待游客量在减少,则A选项错误.
    规律方法 1.当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选出符合实际情况的答案.
    2.图形、表格能直观刻画两变量间的依存关系,考查了数学直观想象核心素养.
    考点二 已知函数模型求解实际问题
    【例2】 为了降低能源损耗,某体育馆的外墙需要建造隔热层,体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10,k为常数),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.
    (1)求k的值及f(x)的表达式;
    (2)隔热层修建多厚时,总费用f(x)达到最小?并求最小值.
    【解析】 (1)当x=0时,C=8,∴k=40,
    ∴C(x)=(0≤x≤10),
    ∴f(x)=6x+=6x+(0≤x≤10).
    (2)由(1)得f(x)=2(3x+5)+-10.
    令3x+5=t,t∈[5,35],
    则y=2t+-10≥2-10=70(当且仅当2t=,即t=20时等号成立),
    此时x=5,因此f(x)的最小值为70.
    ∴隔热层修建5 cm厚时,总费用f(x)达到最小,最小值为70万元.
    规律方法 1.求解已知函数模型解决实际问题的关注点.
    (1)认清所给函数模型,弄清哪些量为待定系数.
    (2)根据已知利用待定系数法,确定模型中的待定系数.
    2.利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.
    考点三 构造函数模型求解实际问题
    【例3-1】活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4

    相关学案

    第14讲-导数在研究函数中的应用(解析版)学案:

    这是一份第14讲-导数在研究函数中的应用(解析版)学案,共27页。

    第12讲-函数与数学模型(讲义版)学案:

    这是一份第12讲-函数与数学模型(讲义版)学案,共9页。

    第11讲-函数与方程(解析版)学案:

    这是一份第11讲-函数与方程(解析版)学案,共15页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map