终身会员
搜索
    上传资料 赚现金

    2021-2022学年七年级数学上册同步培优(苏科版)专题05 有理数中的规律题(解析版)

    立即下载
    加入资料篮
    2021-2022学年七年级数学上册同步培优(苏科版)专题05 有理数中的规律题(解析版)第1页
    2021-2022学年七年级数学上册同步培优(苏科版)专题05 有理数中的规律题(解析版)第2页
    2021-2022学年七年级数学上册同步培优(苏科版)专题05 有理数中的规律题(解析版)第3页
    还剩10页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年七年级数学上册同步培优(苏科版)专题05 有理数中的规律题(解析版)

    展开

    这是一份2021-2022学年七年级数学上册同步培优(苏科版)专题05 有理数中的规律题(解析版),共13页。试卷主要包含了解答题,填空题等内容,欢迎下载使用。


    专题05  《有理数》中的规律题

    (满分120     时间:60分钟)       班级              姓名               得分          

    一、解答题:

    1. 观察下列算式:,则的末位数字是     

    A. 8 B. 6 C. 4 D. 0

    【答案】B

    【解析】解因为的个位数字是2486,每4个一循环,而
    所以的个位数字与的个位数字相同,是4
    因此的末位数字是的末位数字.
    因为
    所以的末位数字是
     

    1. 定义一种对正整数n的“F”运算:n为奇数时,n为偶数时,其中k是使为奇数的正整数,两种运算交替重复进行,例如,取,则
       

    ,则第2018次“F”运算的结果是   

    A. 1 B. 4 C. 2018 D.

    【答案】A

    【解析】若
    1次运算的结果为
    2次运算的结果为
    3次运算的结果为
    4次运算的结果为
    5次运算的结果为4
    6次运算的结果为1

    由此可以看出,从第4次开始,结果就只是14两个数轮流出现,且当次数为偶数时,结果是1
    当次数是奇数时,结果是4,而2018是偶数,因此第2018次运算的结果是1
    故选A


     

    1. 把所有正奇数从小到大排列,并按如下规律分组,51113152123252729,若表示正奇数M是第i组第j个数从左往右数,若,则

    A.  B.  C.  D.

    【答案】B

    【解析】解:由已知可知,第一组1个奇数,第二组3个奇数,第三组5个奇数,
    2019是第1010个数,
    2019在第n组,则

    时,
    时,
    个数在第32组,
    1024个数是
    32组的第一数是
    2019是第个数,
    是第32组第49个数.
    故选:B
    由题意可知2019是第1010个数,由,确定1010在第32组,第1024个数是,第32组的第一数是,则2019是第个数,即可求解.
    本题考查数字的变化规律;理解题意,利用奇数和给出的分组特点,逐步确定具体位置是解题的关键.
     

    1. 某一电子昆虫落在数轴上的某点,从点开始跳动,第1次向左跳1个单位长度到,第2次由右跳2个单位长度到,第3次由向左跳3个单位长度到,第4次由向右跳4个单位长度到依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点表示的数恰好是2015,则电子昆虫的初始位置所表示的数是   

    A. 2065 B.  C. 1965 D.

    【答案】C

    【解析】

    【分析】
    本题考查数轴和规律问题,解题的关键是明确题意,找出所求问题需要的条件.
    根据题意,可以发现题目中各个数的变化规律,从而可以求得所表示的数.
    【解答】
    解:设对应的数为x






    表示的数恰好是2015

    可知,
    故选C  

    1. 已知整数满足下列条件:依此类推,则的值为    

    A. 2020 B.  C.  D. 1010

    【答案】C

    【解析】因为

    所以n是奇数时,n是偶数时,

    所以故选C


     

    1. 如图,圆的周长为4个单位长度,在该圆的四等分点处分别标上数字0123,先让圆周上表示数字0的点与数轴上表示数的点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示数的点与圆周上重合的点表示的数字为   


    A. 0 B. 1 C. 2 D. 3

    【答案】C

    【解析】解:因为之间的距离是2018个单位长度,而,所以数轴上表示数的点与圆周上表示数字2的点重合,故选C
     

    1. 计算的结果为   

    A.  B.  C.  D.

    【答案】B

    【解析】原式


    故选B


     

    1. 1中的13610,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的14916,这样的数为正方形数.下列数中既是三角形数又是正方形数的是         


    A. 15 B. 25 C. 36 D. 49

    【答案】C

    【解析】

    【分析】
    此题考查了新定义问题,图形的变化规律以及有理数的加法运算,找出图形之间的联系,利用数字之间的运算规律,解决问题.由题意可知:三角形数的第n个为,正方形数的第n个为,由此逐一验证得出答案即可.
    【解答】
    解:由于三角形数的第n个为,正方形数的第n个为
    A15不是平方数,因此15不是正方形数,故A选项不合题意
    B,因此25不是三角形数,故B选项不合题意
    C,且,因此36既是三角形数又是正方形数,故C选项符合题意
    D,因此49不是三角形数,故D选项不合题意.
    故选C  

    1. 下面是按一定规律排列的一列数:第1个数:

    2个数:

    n个数:

    在第10个数、第11个数、第12个数、第13个数中,最大的数是     

    A. 10个数 B. 11个数 C. 12个数 D. 13个数

    【答案】A

    【解析】

    【分析】
    本题考查的是数字的变化类,有理数的混合运算,有理数大小的比较,根据题意找出规律是解答此题的关键.
    通过计算可以发现,第一个数,第二个数为,第三个数为n个数为,由此求第10个数、第11个数、第12个数、第13个数的得数,通过比较得出答案.
    【解答】
    解:第1个数
    2个数
    3个数

    由此得出第n个数的计算结果
    10个数、第11个数、第12个数、第13个数分别为,其中最大的数为,即第10个数最大.
    故选:A  

    1. 如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋次.移动规则:第k次移动k个顶点如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D,按这样的规则,在这次移动中,跳棋不可能停留的顶点是

    A. CE B. EF C. GCE D. ECF

    【答案】D

    【解析】解:经实验或按下方法可求得顶点CEF棋子不可能停到.
    设顶点ABCDEFG分别是第0123456格,
    因棋子移动了k次后走过的总格数是,应停在第格,
    这时p是整数,且使,分别取234567时,
    363100,发现第245格没有停棋,

    2代入可得,
    由此可知,停棋的情形与时相同,
    故第245格没有停棋,即顶点CEF棋子不可能停到.
    故选:D
    设顶点ABCDEFG分别是第0123456格,因棋子移动了k次后走过的总格数是,然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.
    本题考查规律型:图形的变化类,理解题意能力,关键是知道棋子所停的规则,找到规律,然后得到不等式求解.
     

    二、填空题

    1. 看一看:





      猜一猜:
                
                

    【答案】4

    【解析】当分母为偶数时,结果的分母为2,分子比等号左边最后一个分数的分母小1;当分母为奇数时,结果为等号左边最后一个分数的分子除以2


     

    1. 下面是一组有规律的算式,根据其中规律,第n个算式为: ______
      ;第1个算式
      ;第2个算式
      ;第3个算式
      ;第4个算式

    【答案】

    【解析】解:,第一个算式,
    ,第二个算式,
    ,第三个算式,

    ,第n个算式.
    故答案为:
    根据所给算式分母为6,分子为求解.
    本题考查数字变化的规律,解题关键是通过前三个算式找出数字变化规律.
     

    1. 观察下列各式:,那么          

    【答案】1007

    【解析】解:原式1相加
     

    1. 有两个多位数,都是按照如下方法得到的:从左边开始,将第一位数字乘2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位上对第2位数字再进行如上操作得到第3位数字,,后面的每一位数字都是由前一位数字进行如上操作得到的当第1位数字是3时,仍按以上操作得到一个多位数,则这个多位数前100位的所有数字之和是          

    【答案】495

    【解析】由题意,可得这个多位数是,可以看出,从第2位起,每4个数字一循环,,所以这个多位数前100位的所有数字之和为
     

    1. x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是的差倒数为,现已知,的差倒数,的差倒数,的差倒数,,依次类推,则          

    【答案】

    【解析】解:
    根据差倒数定义可得
    显然,计算结果以三个数为一组循环出现,


     

    1. 的个位数字是          

    【答案】7

    【解析】解:的个位数字是1的个位数字是7的个位数字是9的个位数字是3的个位数字是1
    和的个位数字规律为1870四个数循环,
    所以,所以原式的个位数字是7
     

    三、解答题

    1. 先阅读,再解题:
      因为
      所以
      参照上述解法计算:

    【答案】解:原式


    【解析】本题主要考查了有理数的混合运算和观察数字规律问题,读懂解法是解题的关键,找准式子的变化是解题的突破口,两者不再相等,而是倍半关系。即
     

    1. 我们都知道任何一个非零数都有倒数,现定义:a是不为1的有理数,我们把称为有理数a的差倒数请根据上述定义,解决以下问题:

    求有理数2的差倒数

    求有理数的差倒数

    已知的差倒数,的差倒数,的差倒数,,依次类推,求的值.

    【答案】解:有理数2的差倒数为

    有理数的差倒数为

    因为

    所以

    同理得

    由此可知每3个数一个循环,

    所以

    【解析】略
     

    1. 阅读材料,求值:

    解:设

    将等式两边同时乘2

    下式减去上式得

    请你仿照此法计算:

    其中n为正整数

    【答案】解:

    等式两边同时乘2,得

    下式减去上式,得

    等式两边同时乘3,得

    下式减去上式,得

    【解析】此题考查了有理数的乘方运算,考查了学生的观察与归纳能力.
     

    1. 已知一组数,从左往右数,第1个数是,第2个数是,第3个数是,第4个数是,以此类推,第n个数是

    分别写出第5个数、第6个数;

    记这组数的前n个数的和是,如:

       可表示为

       可表示为

       可表示为

       可表示为

    请计算的值.

    【答案】解:
    5个数是:,第6个数是:
    因为第n个数是
    所以当n为奇数时,第n个数为
    n为偶数时,第n个数为
    所以

    【解析】本题考查数字的规律;根据所给数的特点,将n分为奇数和偶数两种情况解题是关键.
    由已知规律直接可得;
    由第n个数的特点,分别求出当n为奇数时,第n个数为;当n为偶数时,第n个数为,再求
     

    1. 【了解概念】

    对于一个三位数各数位上的数都不为零,任意两个数位上的数对调后得到三个新三位数,将的计算结果称为数x的伴随数,记为

    例如,,对调百位与十位上的数得到213,对调百位与个位上的数得到321,对调十位与个位上的数字得到132123的伴随数为6

    【理解运用】

    填空:              ,若,则             写出一个即可

    设一个三位数x的百位、十位、个位上的数分别为ab,某学习小组经过探究发现数x的伴随数该结论正确吗?说明理由;
    【拓展提升】

    若一个三位数y的百位上的数为m、十位上的数为、个位上的数为2 m,且,求这个三位数y

    【答案】解:根据定义可得,

    可得若,则个位、十位、百位上的数字之和等于9,且不为0
    例如,即
    故答案为:13答案不唯一
    x的伴随数该结论正确,理由如下,
    一个三位数x的百位、十位、个位上的数分别为ab

    由定义可得


    故该结论正确;
    ,且由结论可得,

    解得
    则百位上的数为2、十位上的数为1、个位上的数为4
    这个三位数y214

    【解析】本题考查了新定义和有理数的混合运算,看懂题目的新定义是解题的关键.
    由新定义得,根据有理数的运算法则计算求解;根据定义可得个位、十位、百位上的数字之和等于9,且不为0,即可求解;
    先用abc表示出这个三位数,即,再利用新定义计算证明即可;
    根据已知和新定义,成立m的方程,求解即可.
     

    相关试卷

    2021-2022学年七年级数学上册同步培优(苏科版)专题05 代数式中的压轴题(1)(解析版):

    这是一份2021-2022学年七年级数学上册同步培优(苏科版)专题05 代数式中的压轴题(1)(解析版),共11页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。

    2021-2022学年七年级数学上册同步培优(苏科版)专题09 有理数中的中考真题训练(解析版):

    这是一份2021-2022学年七年级数学上册同步培优(苏科版)专题09 有理数中的中考真题训练(解析版),共6页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。

    2021-2022学年七年级数学上册同步培优(苏科版)专题05 有理数中的规律题(原卷版):

    这是一份2021-2022学年七年级数学上册同步培优(苏科版)专题05 有理数中的规律题(原卷版),共6页。试卷主要包含了解答题,填空题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021-2022学年七年级数学上册同步培优(苏科版)专题05 有理数中的规律题(解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map