终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    人教版高中数学必修第二册10.1.4《概率的基本性质》课件(共31张) (含答案)

    立即下载
    加入资料篮
    人教版高中数学必修第二册10.1.4《概率的基本性质》课件(共31张) (含答案)第1页
    人教版高中数学必修第二册10.1.4《概率的基本性质》课件(共31张) (含答案)第2页
    人教版高中数学必修第二册10.1.4《概率的基本性质》课件(共31张) (含答案)第3页
    人教版高中数学必修第二册10.1.4《概率的基本性质》课件(共31张) (含答案)第4页
    人教版高中数学必修第二册10.1.4《概率的基本性质》课件(共31张) (含答案)第5页
    人教版高中数学必修第二册10.1.4《概率的基本性质》课件(共31张) (含答案)第6页
    人教版高中数学必修第二册10.1.4《概率的基本性质》课件(共31张) (含答案)第7页
    人教版高中数学必修第二册10.1.4《概率的基本性质》课件(共31张) (含答案)第8页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率多媒体教学ppt课件

    展开

    这是一份高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率多媒体教学ppt课件,共30页。PPT课件主要包含了探究新知,概念解析,典例解析,归纳总结,当堂达标,答案C,答案07,课堂小结等内容,欢迎下载使用。
    概率的基本性质1.思考在抛掷质地均匀的骰子试验中,我们定义如下事件:C1=“出现1点”,C2=“出现2点”,C3=“出现3点”,C4=“出现4点”,C5=“出现5点”,C6=“出现6点”,D1=“出现的点数不大于1”,D2=“出现的点数大于4”,D3=“出现的点数小于6”,E=“出现的点数小于7”,F=“出现的点数大于6”,G=“出现的点数为偶数”,H=“出现的点数为奇数”,等等.(1)上述事件中哪些是必然事件?哪些是不可能事件?提示E是必然事件;F是不可能事件.(2)如果事件C1发生,那么一定有哪些事件发生?反之,成立吗?在集合中,集合C1与这些集合之间的关系怎样描述?提示如果事件C1发生,那么一定发生的事件有D1,D3,E,H,反之,如果事件D1,D3,E,H分别成立,那么能推出事件C1发生的只有D1.所以从集合的观点看,事件C1是事件D3,E,H的子集,集合C1与集合D1相等.
    (3)如果事件A与事件B互斥,则事件A∪B发生的频数与事件A发生、事件B发生的频数有什么关系?fn(A∪B)与fn(A),fn(B)有什么关系?进一步得到P(A∪B)与P(A),P(B)有什么关系?提示若事件A与事件B互斥,则A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,从而有fn(A∪B)=fn(A)+fn(B),由此得到P(A∪B)=P(A)+P(B),这就是概率的加法公式.(4)如果事件A与事件B互为对立事件,P(A∪B)与P(A),P(B)又有什么关系?提示因为事件A与事件B互为对立事件,所以A∪B为必然事件,所以P(A∪B)=1.由P(A∪B)=P(A)+P(B),得1=P(A)+P(B),从而得出P(B)=1-P(A),P(A)=1-P(B).
    归纳提升 (1)对于P(A∪B)=P(A)+P(B)应用的前提是A,B互斥,并且该公式可以推广到多个事件的情况.如果事件A1,A2,…,Am两两互斥,那么事件A1∪A2∪…∪Am发生的概率等于这m个事件分别发生的概率之和,即P(A1∪A2∪…∪Am)=P(A1)+P(A2)+…+P(Am).该公式我们常称为互斥事件的概率加法公式.(2)若A与B互为对立,则有P(A)+P(B)=1;若P(A)+P(B)>1,并不能得出A与B互为对立.(3)对于概率加法的一般公式P(A∪B)=P(A)+P(B)-P(A∩B),当A∩B=⌀时,就是性质3.
    3.做一做(1)从装有20个红球和30个白球的罐子里任取两个球,下列情况中是互斥而不是对立的两个事件是(  )A.至少有一个红球与至少有一个白球B.恰有一个红球与都是白球C.至少有一个红球与都是白球D.至多有一个红球与都是红球(2)掷一枚均匀的正六面体骰子,设A=“出现3点”,B=“出现偶数点”,则P(A∪B)等于     . (3)甲、乙两人各射击一次,命中率分别为0.8和0.5,两人同时命中的概率为0.4,则甲、乙两人至少有一人命中的概率为    . 
    (4)判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.①互斥事件不一定是对立事件,但对立事件一定是互斥事件.(  )②在同一试验中的两个事件A与B,一定有P(A∪B)=P(A)+P(B).(  )③若事件A,B满足P(A)+P(B)=1,则A,B是对立事件.(  )
    解析:(1)由题意所有的基本事件可分为三类:两个红球,一红一白,两个白球.易知A选项的事件不互斥;C、D两个选项中的事件为对立事件;而B项中的事件是互斥,同时还有“两个红球”的事件,故不对立.故选B.(3)设事件A=“甲命中”,事件B=“乙命中”,则“甲、乙两人至少有一人命中”为事件A∪B,∴P(A∪B)=P(A)+P(B)-P(A∩B)=0.8+0.5-0.4=0.9.
    一般而言,给出了一个数学对象的定义,就可以从定义出发研究这个数学对象的性质,例如,在给出指数函数的定义后,我们从定义出发研究了指数函数的定义域、值域、单调性、特殊点的函数值等性质,这些性质在解决问题时可以发挥很大的作用,类似地,在给出了概率的定义后,我们来研究概率的基本性质.
    我们从定义出发研究概率的性质,(1)概率的取值范围;(2)特殊事件的概率;(3)事件有某些特殊关系时,它们的概率之间的关系;等等。
    1.概率P(A)的取值范围
    由概率的定义可知:任何事件的概率都是非负的;在每次试验中,必然事件一定发生,不可能事件一定不会发生,一般地,概率有如下性质:
    性质1 对任意的事件A,都有P(A)≥0.性质2 必然事件的概率为1, 不可能事件的概率为0, 即P(Ω)=1,P(Φ)=0.
    2. 概率的加法公式 ( 互斥事件时有一个发生的概率)
    性质3.如果事件A与事件B互斥, 那么P(A∪B)=P(A)+P(B)
    P(C)=p(A∪B)=p(A)+p(B)=1/6+1/6=1/3
    因为事件A与事件B互斥,即A与B不含有相同的样本点,所以n(AU B)=n(A)+n(B),这等价于P(AUB)=P(A)+P(B),即两个互斥事件的和事件的概率等于这两个事件概率之和,所以我们有互斥事件的概率加法公式:
    性质4:如果事件A与事件B互为对立事件, 那么P(B)=1- P(A), P(A)=1- P(B)
    3.对立事件有一个发生的概率
    例1.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别 为0.21,0.23,0.25,0.28,计算这个射手在一次射击中: (1)射中10环或7环的概率;(2)不够7环的概率.
    [解析] (1)设“射中10环”为事件A,“射中7环”为事件B,由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件.“射中10环或7环”的事件为A∪B.故P(A∪B)=P(A)+P(B)=0.21+0.28=0.49.∴射中10环或7环的概率为0.49.
    一般地,对于事件A与事件B,如果A⊆B,即事件A发生,则事件B一定发生,那么事件A的概率不超过事件B的概率。于是我们有概率的单调性:
    在古典概型中,对于事件A与事件B,如果A⊆B,那么n(A)≤n(B).于是
    即P(A)≤ P(B)
    性质5.如果A⊆B,那么P(A)≤P(B) 由性质5可得,对于任意事件A,因为Φ⊆ A⊆Ω 所以 0 ≤ P(A) ≤1.
    一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地依次随机摸出2个球.设事件R1=“第一次摸到红球”,R2=“第二次摸到红球”,R=“两次都摸到红球”,
    “两个球中有红球”=R1∪R2,那么P(R1∪R2)和P(R1)+P(R2)相等吗?如果不相等,请你说明原因,并思考如何计算P(R1∪R2).
    因为n(Ω)=12,n(R1)=n(R2)=6,n(R1∪R2)=10,所以P(R1)=P(R2)=6/12,P(R1UR2)=10/12.因此P(R1∪R2)≠P(R1)+P(R2).这是因为R1∩R2={(1,2),(2,1)}≠Φ,即事件R1, R2不是互斥的,容易得到P(R1∪R2)=P(R1)+P(R2)-P(R1∩R2).
    一般地,我们有如下的性质:性质6 设A,B是一个随机试验中的两个事件,我们有P(AUB)=P(A)+P(B)-P(A∩B)
    由性质5可得,对于任意事件A,因为Φ⊆ A⊆Ω,所以 0 ≤ P(A) ≤1.
    (1)对于P(A∪B)=P(A)+P(B)应用的前提是A,B互斥,并且该公式可以推广到多个事件的情况.如果事件A1,A2,…,Am两两互斥,那么事件A1∪A2∪…∪Am发生的概率等于这m个事件分别发生的概率之和,即P(A1∪A2∪…∪Am)=P(A1)+P(A2)+…+P(Am).该公式我们常称为互斥事件的概率加法公式.(2)若A与B互为对立,则有P(A)+P(B)=1;若P(A)+P(B)>1,并不能得出A与B互为对立.(3)对于概率加法的一般公式P(A∪B)=P(A)+P(B)-P(A∩B),当A∩B=Φ时,就是性质3.
    例2.从不包含大小王牌的52张扑克牌中随机抽取一张,设事件A=“抽到红心”,事件B=“抽到方片”,P(A)=P(B)=0.25.那么(1)C=“抽到红花色”,求P(C);(2)D=“抽到黑花色”,求P(D).
    解:(1)因为C=A∪B,且A与B不会同时发生,所以A与B是互斥事件.根据互斥事件的概率加法公式,得P(C)=P(A)+P(B)=0.25+0.25=0.5
    (2)因为C与D互斥,又因为C∪D是必然事件,所以C与D互为对立事件.因此P(D)=1-P(C)=1-0.5=0.5.
    例3.为了推广一种新饮料,某饮料生产企业开展了有奖促销活动:将6罐这种饮料装一箱,每箱中都放置2罐能够中奖的饮料.若从一箱中随机抽出2罐,能中奖的概率为多少?
    分析:“中奖”包括第一罐中奖但第二罐不中奖、第一罐不中奖但第二罐中奖、两罐都中奖三种情况。如果设A=“中奖”,A1=“第一罐中奖”,A2=“第二罐中奖”,那么就可以通过事件的运算构建相应事件,并利用概率的性质解决问题.
    我们借助树状图来求相应事件的样本点数.
    1.给出以下结论:①互斥事件一定对立;②对立事件一定互斥;③互斥事件不一定对立;④事件A与B的和事件的概率一定大于事件A的概率;⑤事件A与B互斥,则有P(A)=1-P(B).其中正确命题的个数为(  )A.0B.1C.2D.3
    答案:C解析:对立必互斥,互斥不一定对立,故②③正确,①错;又当A∪B=A时,P(A∪B)=P(A),故④错;只有事件A与B为对立事件时,才有P(A)=1-P(B),故⑤错.
    3.若事件A,B满足A∩B=⌀,A∪B=Ω,且P(A)=0.3,则P(B)=    . 
    4.盒子中有大小、形状均相同的一些黑球、白球和黄球,从中摸出一个球,摸出黑球的概率是0.42,摸出黄球的概率是0.18,则摸出的球是白球的概率是    ,摸出的球不是黄球的概率是    ,摸出的球或者是黄球或者是黑球的概率是    . 答案:0.40 0.82 0.605.一个电路板上装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63,问至少有一根熔断的概率是多少?解:设A=“甲熔丝熔断”,B=“乙熔丝熔断”,则“甲、乙两根熔丝至少有一根熔断”为事件A∪B.P(A∪B)=P(A)+P(B)-P(A∩B)=0.85+0.74-0.63=0.96.
    6.据统计,某储蓄所一个窗口排队等候的人数及相应概率如下表:(1)求至多2人排队等候的概率;(2)求至少2人排队等候的概率.
    解:记在窗口排队等候的人数为0,1,2分别为事件A,B,C,则A,B,C两两互斥.(1)至多2人排队等候的概率是P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)至少2人排队等候的对立事件是“排队等候人数为0或1”,而排队等候人数为0或1的概率为P(A∪B)=P(A)+P(B)=0.1+0.16=0.26,故至少2人排队等候的概率为1-0.26=0.74.

    相关课件

    高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率课文配套课件ppt:

    这是一份高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率课文配套课件ppt,共23页。PPT课件主要包含了导入新课,精彩课堂,典型例题,课堂练习,课堂总结等内容,欢迎下载使用。

    人教A版 (2019)必修 第二册10.1 随机事件与概率授课ppt课件:

    这是一份人教A版 (2019)必修 第二册10.1 随机事件与概率授课ppt课件,共22页。PPT课件主要包含了新课引入,学习新知,典型例题,知识总结,巩固练习,概率的基本性质,事件的关系与运算,包含关系,相等关系,并和事件等内容,欢迎下载使用。

    数学必修 第二册8.1 基本立体图形示范课ppt课件:

    这是一份数学必修 第二册8.1 基本立体图形示范课ppt课件,共47页。PPT课件主要包含了情境导学·探新知,NO1,合作探究·释疑难,NO2,类型1类型2类型3,当堂达标·夯基础,NO3等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map