所属成套资源:人教版九年级数学第21、22章专题测试卷(含解析版)
初中数学人教版九年级上册22.3 实际问题与二次函数同步达标检测题
展开
这是一份初中数学人教版九年级上册22.3 实际问题与二次函数同步达标检测题,文件包含专题24利用二次函数解决喷水问题原卷版docx、专题24利用二次函数解决喷水问题解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
专题24 利用二次函数解决喷水问题班级_________ 姓名_________ 学号_________ 分数_________ 一、单选题(共10小题)1.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A.4米 B.3米 C.2米 D.1米【答案】A【详解】)∵y=-x2+4x=,∴当x=2时,y有最大值4,∴最大高度为4m2.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为,那么水流从喷出至回落到地面所需要的时间是( )A.6 s B.4 s C.3 s D.2 s【答案】A【详解】由于水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2即可求出t,也就求出了水流从抛出至回落到地面所需要的时间.解:水流从抛出至回落到地面时高度h为0,把h=0代入h=30t−5t2得:5t2−30t=0,解得:t1=0(舍去),t2=6.故水流从抛出至回落到地面所需要的时间6s.故选A.3.某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是( )A.2m B.3m C.4m D.5m【答案】B【分析】以OB为x轴,OA为y轴建立平面直角坐标系,A点坐标为(0,10),M点的坐标为(1,),设出抛物线的解析式,代入解答球的函数解析式,进一步求得问题的解.【详解】解:设抛物线的解析式为y=a(x﹣1)2+,把点A(0,10)代入a(x﹣1)2+,得a(0﹣1)2+=10,解得a=﹣,因此抛物线解析式为y=﹣(x﹣1)2+,当y=0时,解得x1=3,x2=﹣1(不合题意,舍去);即OB=3米.故选B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题.解答本题是时设抛物线的顶点式求解析式是关键.4.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A.3s B.4s C.5s D.10s【答案】C【分析】将h关于t的函数关系式变形为顶点式,即可得出升到最高点的时间,从而得出结论.【详解】解:∵h=﹣2t2+20t+1=﹣2(t﹣5)2+51,∴当t=5时,礼炮升到最高点.故选:C.【点睛】本题考查了二次函数的应用,解题的关键是将二次函数的关系式变形为顶点式.本题属于基础题,难度不大,解决该题型题目时,将函数的关系式进行变换找出顶点坐标即可.5.如图,某幢建筑物从2.25米高的窗口用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点离墙1米,离地面3米,则水流下落点离墙的距离是( )A.2.5米 B.3米 C.3.5米 D.4米【答案】B【分析】由题意可以知道M(1,3),A(0,2.25),用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.【详解】解:设抛物线的解析式为y=a(x-1)2+3,把A(0,2.25)代入,得2.25=a+3,a=-0.75.∴抛物线的解析式为:y=-0.75(x-1)2+3.当y=0时,0=-0.75(x-1)2+3,解得:x1=-1(舍去),x2=3.OB=3米.故选:B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题,解答本题是求出抛物线的解析式.6.广场上水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠和喷头的水平距离(米)的函数解析式是,那么水珠的高度达到最大时,水珠与喷头的水平距离是( )A.1米 B.2米 C.5米 D.6米【答案】B【分析】先把函数关系式配方,即可求出函数取最大值时自变量的值.【详解】解:∵y=-x2+6x=-(x2-4x)=-[(x-2)2-4]=-(x-2)2+6,
∴当x=2时,y有最大值,
∴水珠的高度达到最大时,水珠与喷头的水平距离是2.
故选B.【点睛】本题考查了二次函数的实际应用,关键是把二次函数变形,求出当函数取最大值时自变量的值,此题为数学建模题,借助二次函数解决实际问题.7.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+,则下列结论:(1)柱子OA的高度为m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是2.5m;(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.其中正确的有( )A.1个 B.2个 C.3个 D.4个【答案】C【分析】在已知抛物线解析式的情况下,利用其性质,求顶点(最大高度),与x轴,y轴的交点,解答题目的问题.【详解】解:当x=0时,y=,故柱子OA的高度为m;(1)正确;∵y=﹣x2+2x+=﹣(x﹣1)2+2.25,∴顶点是(1,2.25),故喷出的水流距柱子1m处达到最大高度,喷出的水流距水平面的最大高度是2.25米;故(2)正确,(3)错误;解方程﹣x2+2x+=0,得x1=﹣,x2=,故水池的半径至少要2.5米,才能使喷出的水流不至于落在水池外,(4)正确.故选C.【点睛】考查了抛物线解析式的实际应用,掌握抛物线顶点坐标,与x轴交点,y轴交点的实际意义是解决问题的关键.8.某公园有一个圆形喷水池,喷出的水流呈抛物线状,一条水流的高度与水流时间之间的解析式为,那么水流从抛出至落到地面所需要的时间是( )A. B. C. D.【答案】B【分析】求出解析中h=0时t的值即可得.【详解】在h=30t−5t2中,令h=0可得30t−5t2=0,解得:t=0或t=6,所以水流从抛出至落到地面所需要的时间是6s,故选:B.【点睛】本题主要考查二次函数的应用,解题的关键是明确解析式中水流落到地面所对应的函数值为0.9.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面( )A.0.55米 B.米 C.米 D.0.4米【答案】B【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x=1.25=,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论.【详解】解:如图,以O为原点,建立平面直角坐标系,由题意得,对称轴为x=1.25=,A(0,0.8),C(3,0),设解析式为y=ax2+bx+c,∴,解得:,所以解析式为:y=x2+x+,当x=2.75时,y=,∴使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08﹣=,故选:B.【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键10.某广场有一个小型喷泉,水流从垂直于地面的水管喷出,长为.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点到的距离为.建立平面直角坐标系,水流喷出的高度与水平距离之间近似满足函数关系,则水流喷出的最大高度为( )A. B. C. D.【答案】D【分析】由题意可得,抛物线经过点(0,1.5)和(3,0),把上述两个点坐标代入二次函数表达式,可求出a和c的值,则抛物线的解析式可求出,再把抛物线解析式化为顶点式即可求出水流喷出的最大高度.【详解】解:由题意可得,抛物线经过点(0,1.5)和(3,0),把上述两个点坐标代入二次函数表达式得:,解得:,∴函数表达式为:,∵a<0,故函数有最大值,∴当x=1时,y取得最大值,此时y=2,答:水流喷出的最大高度为2米.故选:D.【点睛】本题考查了二次函数的性质在实际生活中的应用,要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.二、填空题(共5小题)11.体育公园的圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处为喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下如图如果曲线APB表示的是落点B离点O最远的一条水流如图,水流喷出的高度米与水平距离米之间的关系式是,那么圆形水池的半径至少为______米时,才能使喷出的水流不至于落在池外. 【答案】【分析】求出函数解析式中y=0时x的值,结合x>0可得最终的x的值,从而得出OB的长.【详解】解:在 中,当y=0时, ,解得 , , , ,即 ,圆形水池的半径至少为米时,才能使喷出的水流不至于落在池外,故答案为.【点睛】本题主要考查二次函数的应用,解题的关键是明确函数解析式中两个变量的实际意义.12.某体育公园的圆形喷水池的水柱如图①所示,如果曲线APB表示落点B离点O最远的一条水流(如图②),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y=-x2+4x+,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.【答案】 【详解】当y=0时,即-x2+4x+=0,
解得x1=,x2=-(舍去).
答:水池的半径至少米时,才能使喷出的水流不落在水池外.
故答案是:.13.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA=1.25m,A处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O,直径为线段CB.建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x轴的距离为2.25m,到y轴的距离为1m,则水落地后形成的圆的直径CB=_____m.【答案】5【分析】设y轴右侧的抛物线解析式为:y=a(x−1)2+2.25,将A(0,1.25)代入,求得a,从而可得抛物线的解析式,再令函数值为0,解方程可得点B坐标,从而可得CB的长.【详解】解:设y轴右侧的抛物线解析式为:y=a(x﹣1)2+2.25∵点A(0,1.25)在抛物线上∴1.25=a(0﹣1)2+2.25解得:a=﹣1∴抛物线的解析式为:y=﹣(x﹣1)2+2.25令y=0得:0=﹣(x﹣1)2+2.25解得:x=2.5或x=﹣0.5(舍去)∴点B坐标为(﹣2.5,0)∴OB=OC=2.5∴CB=5故答案为:5.【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数的相关性质及正确的解方程,是解题的关键.14.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为3m处达到最高,高度为5m,水柱落地处离池中心距离为9m,则水管的长度OA是_____m.【答案】.【分析】设抛物线的表达式为:y=a(x-h)2+k=(x-3)2+5,将点(9,0)代入上式求出a,进而求解.【详解】解:设抛物线的表达式为:y=a(x-h)2+k=a(x-3)2+5,将点(9,0)代入上式并解得:,故抛物线的表达式为:,令x=0,则,即故答案为:【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.15.如图是某公园一圆形喷水池,水流在各个方向沿形状相同的抛物线落下,建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处M(1,2.25),如果不考虑其他因素,那么水池的半径至少要______m,才能使喷出的水流不至落到池外.【答案】2.5【分析】由水流路线最高处B(1,2.25)可设顶点式,再根据图象过点A(0,1.25)即可得出函数解析式,然后设y=0求出点B的坐标得出答案.【详解】设抛物线的解析式为,∵图象过点A(0,1.25) ∴,解得:a=-1,∴抛物线的解析式为,当y=0时,解得:x=2.5或x=-0.5, ∴水池半径至少要2.5m.【点睛】本题主要考查的是二次函数的应用,属于基础题型,是中考常见题,一般难度不大,需熟练掌握.解决这个问题的关键是求出函数解析式.三、解答题(共2小题)16.要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?【答案】水管长为2.25m.【分析】以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系,设抛物线的解析式为y=a(x﹣1)2+3(0≤x≤3),将(3,0)代入求得a值,则x=0时得的y值即为水管的长.【详解】以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为:y=a(x﹣1)2+3(0≤x≤3),代入(3,0)求得:a=.将a值代入得到抛物线的解析式为:y=(x﹣1)2+3(0≤x≤3),令x=0,则y==2.25.故水管长为2.25m.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.17.用各种盛水容器可以制作精致的家用流水景观(如图1). 科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:m),如果在离水面竖直距离为h(单校:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H—h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高h cm处开一个小孔. (1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.【答案】(1),当时,;(2)或;(3)垫高的高度为16cm,小孔离水面的竖直距离为18cm【分析】(1)将s2=4h(20-h)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可;(2)设存在a,b,使两孔射出水的射程相同,则4a(20-a)=4b(20-b),利用因式分解变形即可得出答案;(3)设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.【详解】解:(1)∵s2=4h(H-h),∴当H=20时,s2=4h(20-h)=-4(h-10)2+400,∴当h=10时,s2有最大值400,∴当h=10时,s有最大值20cm.∴当h为何值时,射程s有最大值,最大射程是20cm;故答案为:最大射程是20cm.(2) ∵s2=4h(20-h),设存在a,b,使两孔射出水的射程相同,则有:4a(20-a)=4b(20-b),∴20a-a2=20b-b2,∴a2-b2=20a-20b,∴(a+b)(a-b)=20(a-b),∴(a-b)(a+b-20)=0,∴a-b=0或a+b-20=0,∴a=b或a+b=20.故答案为:a=b或a+b=20.(3)设垫高的高度为m,则∴当时,∴时,此时∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.故答案为:垫高的高度为16cm,小孔离水面的竖直距离为18cm.【点睛】本题考查了二次函数在实际问题中的应用,厘清题中的数量关系并明确二次函数的性质是解题的关键.
相关试卷
这是一份数学人教版22.3 实际问题与二次函数同步练习题,文件包含专题26利用二次函数解决其他问题原卷版docx、专题26利用二次函数解决其他问题解析版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
这是一份初中数学人教版九年级上册22.3 实际问题与二次函数综合训练题,文件包含专题23利用二次函数解决投球问题原卷版docx、专题23利用二次函数解决投球问题解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份初中数学人教版九年级上册22.3 实际问题与二次函数同步达标检测题,文件包含专题22利用二次函数解决销售问题原卷版docx、专题22利用二次函数解决销售问题解析版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。