人教A版 (2019)必修 第二册10.3 频率与概率背景图ppt课件
展开1.理解随机模拟试验出现地意义.2.利用随机模拟试验求概率.
1.数学抽象:随机模拟试验的理解.2.数学运算:利用随机模拟试验求概率.
阅读课本255-257页,思考并完成以下问题1、什么是随机模拟? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
1.随机模拟 我们知道,利用计算器或计算机软件可以产生随机数.实际上,我们也可以根据不同的随机试验构建相应的随机数模拟实验,这样就可以快速地进行大量重复试验了,这么随机模拟方式叫做随机模拟. 我们称利用随机模拟解决问题地方法为蒙特卡洛(Mnte Carl)方法.
1.下列不能产生随机数的是 ( )A.抛掷骰子试验 B.抛硬币C.计算器 D.正方体的六个面上分别写有
2.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示未命中;再以每三个随机数为一组代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A.0.35 B.0.25C.0.20 D.0.15
题型分析 举一反三
例1 从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二月……十二月是等可能的.设事件 “至少有两人出生月份相同”,设计一种试验方法,模拟20次,估计事件 发生的概率.
例2 在一次奥运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4.利用计算机模拟试验,估计甲获得冠军的概率.
2.一个袋中有7个大小、形状相同的小球,6个白球1个红球.现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取.试设计一个模拟试验,计算恰好第三次摸到红球的概率.
解析 用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间取整数值的随机数,因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组.例如,产生20组随机数.666 743 671 464 571561 156 567 732 375716 116 614 445 117573 552 274 114 622
人教A版 (2019)必修 第二册9.1 随机抽样图片课件ppt: 这是一份人教A版 (2019)必修 第二册9.1 随机抽样图片课件ppt,共32页。PPT课件主要包含了③机会均等抽样,①总体个数有限,②逐个进行抽取,①抽签法,②随机数表法,温故知新,问题与探究,样本代表性,每一层抽取的样本数,×总样本量等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率背景图课件ppt: 这是一份高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率背景图课件ppt,共30页。PPT课件主要包含了情境导学,探究新知,概念解析,典例解析,归纳总结,跟踪训练,问题探究,随机事件,必然事件,不可能事件等内容,欢迎下载使用。
人教A版 (2019)必修 第二册9.1 随机抽样评课课件ppt: 这是一份人教A版 (2019)必修 第二册9.1 随机抽样评课课件ppt,共26页。PPT课件主要包含了课程目标,数学学科素养,自主预习回答问题,知识清单,小试牛刀等内容,欢迎下载使用。