初中数学人教版九年级上册25.2 用列举法求概率同步练习题
展开课后作业
1.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )
A. B. C. D.
2.某班九年级一共有1,2,3,4四个班,先从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )
A. B. C. D.
3.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是( )
A. B. C. D.
4.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是( )
A. B. C. D.
5.掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是( )
A. B. C. D.
6.小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是( )
A.游戏对小明有利 B.游戏对小白有利
C.这是一个公平游戏 D.不能判断对谁有利
7.下列游戏公平的是( )
A.掷一个硬币两次,出现两次正面甲胜,出现两次反面乙胜
B.掷一个硬币两次,出现一次正面甲胜,出现两次反面乙胜
C.掷一个硬币两次,至少出现一次正面甲胜,出现一次反面一次正面乙胜
D.掷一个硬币两次,出现相同面甲胜,至少出现一次正面乙胜
8.小明用瓶盖设计了一个游戏:任意掷一个瓶盖;如果盖底着地,则甲胜;如果盖口着地,则乙胜.你认为这个游戏( )
A.不公平 B.公平 C.对甲有利 D.对乙有利
9.甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.
(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;
(2)求出现平局的概率.
10.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.
(1)求袋子中白球的个数;(请通过列式或列方程解答)
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
11.从1名男生和3名女生中随机抽取参加“我爱苏州”演讲比赛的同学.
(1)若抽取1名,恰好是男生的概率为 ;
(2)若抽取2名,求恰好是2名女生的概率.(用树状图或列表法求解)
12.一个不透明的盒子中有4个小球,小球上面分别标有数字0、1、2、3,每个小球除所标数字不同外其他都相同.小亮先从盒子中随机抽出一个小球,记下数字后不放回,并把其余的球搅匀;再从盒子中随机抽出一个小球记下数字.用画树状图(或列表)的方法,求小亮两次抽出的小球上所标数字之积为偶数的概率.
13.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.
14.有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别.现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个,且只能放一个小球.
(1)请用树状图列举出3个小球放入盒子的所有可能情况;
(2)求白球恰好被放入③号盒子的概率.
15.一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5.
(1)求口袋中红球的个数.
(2)从袋中任意摸出一球,放回摇匀后,再摸出一球,则两次都摸到白球的概率是多少?请你用列表或画树状图的方法说明理由.
16.甲、乙两人参加普法知识竞赛,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙依次各抽一题.
求:(1)甲抽到选择题,乙抽到判断题的概率是多少?
(2)甲、乙两人中至少有1人抽到选择题的概率是多少?
17.甲、乙两人玩“石头、剪刀、布”游戏,他们在不透明的袋子中放入形状、大小均相同的12张卡片,其中写有“石头”“剪刀”“布”的卡片张数分别为3、4、5,两人各随机摸出一张卡片(先摸者不放回卡片)来比胜负,并约定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,但同种卡片不分胜负.
(1)若甲先摸,则他摸出“石头”的概率是多少?
(2)若甲先摸出“石头”,则乙获胜的概率是多少?
(3)若甲先摸,则他摸出哪种卡片获胜的可能性最大?
18.某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.
(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)
(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)
19.在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.
(1)随机从箱子里取出1个球,则取出黄球的概率是多少?
(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.
20.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.
(1)写出所有选购方案(利用树状图或列表方法表示)
(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?
21.甲、乙、丙三位歌手进入“我是歌手”的冠、亚、季军的决赛,他们通过抽签来决定演唱顺序.
(1)求甲第一位出场的概率;
(2)用树状图或列表格写出所有可能的出场顺序,并求出甲比乙先出场的概率.
22.商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
23.有A、B两只不透明的布袋,A袋中有四个除标号外其他完全相同的小球,标号分别为0、1、2、3;B袋中有三个除标号外其他完全相同的小球,标号分别为﹣2、﹣1、0.小明先从A袋中随机取出一小球,用m表示该球的标号,再从B袋中随机取出一球,用n表示该球的标号.
(1)若m、n分别表示数轴上两个点,请用树状图或列表的方式表示(m、n)的所有可能结果,并求这两个点之间的距离不大于3的概率;
(2)若在B袋中再加若干个标号为1的除标号外其他完全相同的小球,搅匀后,在A袋和B袋中各摸出一个球,若标号不相同的概率为,则再加的标号为1的小球的个数为 .
24.阅读对话,解答问题.
(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树形图法或列表法写出(a,b)的所有取值;
(2)若小冬从小丽、小兵袋子中抽出的卡片上标有的数字之积为奇数,算小丽赢,否则算小兵赢,这样的取法合理吗?
25.光明中学组织学生到一科技馆的五个不同展馆参观,学校所购不同展馆门票种类、数量绘制成的条形和扇形统计图如图所示.
请根据统计图回答下列问题:
(1)将条形统计图和扇形统计图在图中补充完整;
(2)在参观科技馆时,小明和小华都想先玩一种现代化跑车游戏,对于他们决定谁先玩时,他们决定采用游戏方法来确定顺序,规则是:每人分别抛掷一个质地均匀的小立方体(每个面分别标有1,2,3,4,5,6),落定后,若两个小立方体朝上的数字之和为偶数,则甲先玩;若两个小立方体朝上的数字之和为奇数,则乙先玩.你认为这个方法公平吗?试说明理由.
26.四张质地相同的卡片上分别写有数字1,﹣2,﹣3,﹣4,将卡片洗匀后,背面朝上放置桌面上,甲、乙两人进行如下抽卡游戏:甲先抽一张卡片不放回,乙再抽一张卡片.
(1)若甲抽到的卡片恰为数字﹣3,则乙抽到卡片的数字为负数的概率是 ;
(2)将甲、乙两人抽取卡片的数字分别作为点M的横坐标、纵坐标.甲、乙约定:若点M在第三象限,则甲胜;反之则乙胜.你认为这个游戏是否公平?用画树状图或列表的方法表示所有等可能结果,并加以说明.
27.甲乙两名同学玩摸球游戏.把除颜色外完全相同的六个小球分别放到两个袋子中,其中一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球.现在随机从两个袋子中分别摸出一个小球.
甲说:如果摸出两个不同颜色的小球我获胜,摸出两个相同颜色的小球你获胜;
乙说:这个游戏规则对我不公平.
请你用列表或画“树形图”的方法说明乙的观点是否正确.
28.如图,把圆形转盘A平均4等份、圆形转盘B平均3等份,并在每一个小区域内标上数字.欢欢、乐乐两个人玩转盘戏,
(1)试用列表或画树状图的方法,求欢欢获胜的概率;
(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.
29.准备三张纸片,两张纸片上各画一个三角形,另一张纸片画一个正方形(如图所示).如果将这三张纸片放在一个盒子里搅匀.
(1)随机地从盒子里抽取一张纸片,纸片上画有一个三角形的机会是多少?
(2)甲、乙两人制定了这样的游戏规则:随机地抽取两张纸片,可能拼成一个菱形(取出的是两张画三角形的纸片),也可能拼成一个房子(取出的是一张画三角形、一张画正方形的纸片).若拼成一个菱形,则甲赢;若拼成一个房子,则乙赢.你认为这个游戏公平吗?请说明理由.
30.某班要从演讲水平相当的甲、乙两人中选派一人参加学校的演讲大赛,为了公平,班委会设计了一个方法,其规则如下:在一个不透明的袋子里装有形状、大小、质地等完全相同的3个小球,把它们分别标上数字1、2、3,由甲从中随机摸出一个小球,记下小球上的数字;在另一个不透明口袋中装有形状、大小、质地等完全相同的4个小球,把它们分别标上数字1、2、3、4,由乙从口袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选甲去;若两个数字的和为偶数,则选乙去.
(1)请用树状图或列表的方法求甲被选去参加演讲大赛的概率;
(2)你认为这个方法公平吗?若公平,请说明理由;若不公平,请设计一个公平的方法.
31.有红、黄两个盒子,红盒子中装有编号分别为1、2、3、5的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.
(1)试用列表或画树状图的方法,求甲获胜的概率;
(2)请问这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,试改动红盒子中的一个小球的编号,使游戏规则公平.
32.小莉的爸爸买了今年8月去深圳看世界大学生运动会的一张门票,她和哥哥两个人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为1、2、3、5的四张牌给小莉,将数字为2、4、6、8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张扑克牌中随机抽取一张,然后将抽取的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.
(1)请用树状图或列表的方法求小莉去看大运会的概率;
(2)哥哥设计的游戏规则公平吗?若不公平,如何在原有游戏规则上改进,使之公平?
33.如图所示,在完全相同的5张纸上,分别画有三个三角形和两个正方形,搅匀后随机抽取两张,拼成菱形则甲胜,拼成房子则乙胜,拼成矩形则为和,你认为这个游戏公平吗?
34.同一副扑克牌的4张扑克的正面:方块3,红桃6,黑桃10,梅花Q,将它们正面朝下洗均匀后放在桌上,小明先从中取出一张,小惠从剩余三张中取出一张.
小惠说:若两张数字之和为偶数,你胜;否则,我胜.
(1)用树状图或列表,表示出所有可能出现的结果.
(2)小惠说的,公平吗?为什么?
35.小昆和小明玩摸纸牌的游戏,游戏规则如下:有三张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌子上,随机抽出一张,记下牌面数字,再从剩下的牌中抽出一张,两次抽到的牌分别记为A、B.
(1)请用画树状图或列表的方法,表示出两次抽出的纸牌数字可能出现的所有结果;
(2)若规定:两次抽的纸牌数字之和为奇数,则小昆胜;否则小明胜.你认为此游戏公平吗?为什么?若不公平,请你修改游戏规则,使游戏对双方都公平.
人教版九年级上册25.2 用列举法求概率课时作业: 这是一份人教版九年级上册25.2 用列举法求概率课时作业,共8页。试卷主要包含了单选题,解答题等内容,欢迎下载使用。
初中数学25.3 用频率估计概率一课一练: 这是一份初中数学25.3 用频率估计概率一课一练,文件包含253用频率估计概率练习学生版docx、253用频率估计概率练习教师版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
人教版九年级上册25.1 随机事件与概率综合与测试课后复习题: 这是一份人教版九年级上册25.1 随机事件与概率综合与测试课后复习题,文件包含251随机事件与概率练习学生版docx、251随机事件与概率练习教师版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。