|试卷下载
搜索
    上传资料 赚现金
    高考数学一轮复习第一章 1.7 试卷01
    高考数学一轮复习第一章 1.7 试卷02
    高考数学一轮复习第一章 1.7 试卷03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习第一章 1.7

    展开
    这是一份高考数学一轮复习第一章 1.7,共17页。试卷主要包含了基本不等式,几个重要的不等式,算术平均数与几何平均数,利用基本不等式求最值问题等内容,欢迎下载使用。

    §1.7 基本不等式及其应用

    1.基本不等式:≤
    (1)基本不等式成立的条件:a>0,b>0.
    (2)等号成立的条件:当且仅当a=b时取等号.
    2.几个重要的不等式
    (1)a2+b2≥2ab(a,b∈R).
    (2)+≥2(a,b同号).
    (3)ab≤2 (a,b∈R).
    (4)≥2 (a,b∈R).
    以上不等式等号成立的条件均为a=b.
    3.算术平均数与几何平均数
    设a>0,b>0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.
    4.利用基本不等式求最值问题
    已知x>0,y>0,则
    (1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值2.(简记:积定和最小)
    (2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值.(简记:和定积最大)
    概念方法微思考
    1.若两个正数的和为定值,则这两个正数的积一定有最大值吗?
    提示 不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值.
    2.函数y=x+的最小值是2吗?
    提示 不是.因为函数y=x+的定义域是{x|x≠0},当x<0时,y<0,所以函数y=x+无最小值.

    题组一 思考辨析
    1.判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)函数f (x)=cos x+,x∈的最小值等于4.( × )
    (2)“x>0且y>0”是“+≥2”的充要条件.( × )
    (3)(a+b)2≥4ab(a,b∈R).( √ )
    (4)若a>0,则a3+的最小值为2.( × )

    题组二 教材改编
    2.设x>0,y>0,且x+y=18,则xy的最大值为(  )
    A.80 B.77 C.81 D.82
    答案 C
    解析 ∵x>0,y>0,∴≥,
    即xy≤2=81,当且仅当x=y=9时,(xy)max=81.
    3.若把总长为20 m的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m2.
    答案 25
    解析 设矩形的一边为x m,面积为y m2,
    则另一边为×(20-2x)=(10-x)m,其中0 ∴y=x(10-x)≤2=25,
    当且仅当x=10-x,即x=5时,ymax=25.

    题组三 易错自纠
    4.“x>0”是“x+≥2成立”的(  )
    A.充分不必要条件 B.必要不充分条件
    C.充要条件 D.既不充分也不必要条件
    答案 C
    解析 当x>0时,x+≥2=2.
    因为x,同号,所以若x+≥2,则x>0,>0,所以“x>0”是“x+≥2成立”的充要条件,故选C.
    5.若函数f (x)=x+(x>2)在x=a处取最小值,则a等于(  )
    A.1+ B.1+ C.3 D.4
    答案 C
    解析 当x>2时,x-2>0,f (x)=(x-2)++2≥2+2=4,当且仅当x-2=(x>2),即x=3时取等号,即当f (x)取得最小值时,x=3,即a=3,故选C.
    6.若正数x,y满足3x+y=5xy,则4x+3y的最小值是(  )
    A.2 B.3 C.4 D.5
    答案 D
    解析 由3x+y=5xy,得=+=5,
    所以4x+3y=(4x+3y)·

    ≥(4+9+2)=5,
    当且仅当=,即x=,y=1时,“=”成立,
    故4x+3y的最小值为5.故选D.
    7.若实数x,y满足x>y>0,且log2x+log2y=1,则+的最小值是________,的最大值为________.
    答案 2 
    解析 实数x,y满足x>y>0,且log2x+log2y=1,则xy=2,
    则+≥2=2,当且仅当=,即x=2,y=1时取等号,
    故+的最小值是2,
    又x>y>0,x-y>0,
    ===≤=,当且仅当x-y=,即x=+1,y=-1时取等号,
    故的最大值为.
    利用基本不等式求最值
    命题点1 配凑法
    例1 (1)已知0 答案 
    解析 x(4-3x)=·(3x)(4-3x)
    ≤·2=,
    当且仅当3x=4-3x,即x=时,取等号.
    (2)已知x<,则f (x)=4x-2+的最大值为________.
    答案 1
    解析 因为x<,所以5-4x>0,
    则f (x)=4x-2+=-+3≤-2+3=1,当且仅当5-4x=,即x=1时,取等号.
    故f (x)=4x-2+的最大值为1.
    (3)已知函数f (x)=(x<-1),则(  )
    A.f (x)有最小值4 B.f (x)有最小值-4
    C.f (x)有最大值4 D.f (x)有最大值-4
    答案 A
    解析 f (x)==
    =-=-
    =-(x+1)++2.
    因为x<-1,所以x+1<0,-(x+1)>0,
    所以f (x)≥2+2=4,
    当且仅当-(x+1)=,即x=-2时,等号成立.
    故f (x)有最小值4.

    命题点2 常数代换法
    例2 若正数m,n满足2m+n=1,则+的最小值为(  )
    A.3+2 B.3+
    C.2+2 D.3
    答案 A
    解析 因为2m+n=1,
    则+=·(2m+n)=3++
    ≥3+2=3+2,
    当且仅当n=m,即m=,n=-1时等号成立,
    所以+的最小值为3+2,故选A.

    命题点3 消元法
    例3 已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为________.
    答案 6
    解析 方法一 (换元消元法)
    由已知得x+3y=9-xy,
    因为x>0,y>0,
    所以x+3y≥2,
    所以3xy≤2,
    当且仅当x=3y,即x=3,y=1时取等号,
    即(x+3y)2+12(x+3y)-108≥0,
    令x+3y=t,则t>0且t2+12t-108≥0,
    得t≥6,即x+3y的最小值为6.
    方法二 (代入消元法)
    由x+3y+xy=9,得x=,
    所以x+3y=+3y=
    ==
    =3(1+y)+-6≥2-6
    =12-6=6,
    当且仅当3(1+y)=,即y=1,x=3时取等号,
    所以x+3y的最小值为6.
    思维升华 (1)前提:“一正”“二定”“三相等”.
    (2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.
    (3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.
    跟踪训练1 (1)(2019·天津)设x>0,y>0,x+2y=4,则的最小值为________.
    答案 
    解析 =
    ==2+.
    ∵x>0,y>0且x+2y=4,
    ∴4≥2(当且仅当x=2,y=1时取等号),
    ∴2xy≤4,∴≥,
    ∴2+≥2+=.
    (2)(2020·天津模拟)已知a>0,b>0,c>0,若点P(a,b)在直线x+y+c=2上,则+的最小值为________.
    答案 2+2
    解析 ∵P(a,b)在x+y+c=2上,
    ∴a+b+c=2,a+b=2-c>0,
    +=+=+-1,
    设则m+n=2,
    +=+=×
    =3++≥3+2=3+2,
    当且仅当m2=2n2,即c=2-2时,等号成立,
    ∴+-1≥3+2-1=2+2,
    即+的最小值为2+2.
    基本不等式的综合应用
    命题点1 基本不等式与其他知识交汇的最值问题
    例4 设等差数列{an}的公差为d,其前n项和是Sn,若a1=d=1,则的最小值是________.
    答案 
    解析 an=a1+(n-1)d=n,Sn=,
    所以==
    ≥=,
    当且仅当n=4时取等号,所以的最小值是.

    命题点2 求参数值或取值范围
    例5 已知不等式(x+y)≥9对任意正实数x,y恒成立,则正实数a的最小值为(  )
    A.2 B.4 C.6 D.8
    答案 B
    解析 已知不等式(x+y)≥9对任意正实数x,y恒成立,只要求(x+y)的最小值大于或等于9,
    ∵1+a++≥a+2+1,
    当且仅当y=x时,等号成立,
    ∴a+2+1≥9,
    ∴≥2或≤-4(舍去),∴a≥4,
    即正实数a的最小值为4,故选B.
    思维升华 求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.
    跟踪训练2 (1)已知函数f (x)=ax2+bx(a>0,b>0)的图象在点(1,f (1))处的切线的斜率为2,则的最小值是(  )
    A.10 B.9 C.8 D.3
    答案 B
    解析  由函数f (x)=ax2+bx,得f′(x)=2ax+b,
    由函数f (x)的图象在点(1,f (1))处的切线斜率为2,
    所以f′(1)=2a+b=2,
    所以=+=(2a+b)
    =≥
    =(10+8)=9,
    当且仅当=,即a=,b=时等号成立,
    所以的最小值为9,故选B.
    (2)在△ABC中,A=,△ABC的面积为2,则+的最小值为(  )
    A. B. C. D.
    答案 C
    解析 由△ABC的面积为2,
    所以S=bcsin A=bcsin =2,得bc=8,
    在△ABC中,由正弦定理得
    +=+
    =+=+
    =+-
    ≥2-=2-=,
    当且仅当b=2,c=4时,等号成立,故选C.
    基本不等式的实际应用
    例6 (1)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x的值是______.
    答案 30
    解析 一年的总运费为6×=(万元).
    一年的总存储费用为4x万元.
    总运费与总存储费用的和为万元.
    因为+4x≥2=240,
    当且仅当=4x,即x=30时取得等号,
    所以当x=30时,一年的总运费与总存储费用之和最小.
    (2)某人准备在一块占地面积为1 800 m2的矩形地块中间建三个矩形温室大棚,大棚周围均是宽为1 m的小路(如图所示),大棚总占地面积为S m2,其中a∶b=1∶2,则S的最大值为________.

    答案 1 568
    解析 由题意可得xy=1 800,b=2a,x>3,y>3,
    则y=a+b+3=3a+3,
    所以S=(x-2)a+(x-3)b=(3x-8)a
    =(3x-8)=1 808-3x-y
    =1 808-3x-×
    =1 808-≤1 808-2
    =1 808-240=1 568,
    当且仅当3x=,即x=40,y=45时等号成立,S取得最大值,
    所以当x=40,y=45时,S取得最大值为1 568.
    思维升华 利用基本不等式求解实际问题时根据实际问题抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值.
    跟踪训练3 某工厂建造一个无盖的长方体贮水池,其容积为4 800 m3,深度为3 m.如果池底每1 m2的造价为150元,池壁每1 m2的造价为120元,要使水池总造价最低,那么水池底部的周长为________ m.
    答案 160
    解析 设水池底面一边的长度为x m,则另一边的长度为 m,
    由题意可得水池总造价
    f (x)=150×+120
    =240 000+720(x>0),
    则f (x)=720+240 000
    ≥720×2+240 000
    =720×2×40+240 000=297 600,
    当且仅当x=,即x=40时,f (x)有最小值297 600,
    此时另一边的长度为=40(m),
    因此,要使水池的总造价最低,水池底部的周长应为160 m.

    1.函数f (x)=的最小值为(  )
    A.3 B.4 C.6 D.8
    答案 B
    解析 f (x)==|x|+≥2=4,
    当且仅当x=±2时,等号成立,故选B.
    2.若x>0,y>0,则“x+2y=2”的一个充分不必要条件是(  )
    A.x=y B.x=2y
    C.x=2且y=1 D.x=y或y=1
    答案 C
    解析 ∵x>0,y>0,
    ∴x+2y≥2,当且仅当x=2y 时取等号.
    故“x=2且y=1 ”是“x+2y=2”的充分不必要条件.故选C.
    3.(2019·广州期末)若实数x,y满足xy+6x=4,则+的最小值为(  )
    A.4 B.8 C.16 D.32
    答案 B
    解析 实数x,y满足xy+6x=4,
    ∴x=∈,y>0,
    则+=y+6+≥2+6=8,
    当且仅当y=1,x=时取等号.
    ∴+的最小值为8.
    4.若a>0,b>0,lg a+lg b=lg(a+b),则a+b的最小值为(  )
    A.8 B.6 C.4 D.2
    答案 C
    解析 由lg a+lg b=lg(a+b),得lg(ab)=lg(a+b),即ab=a+b,则有+=1,所以a+b=(a+b)=2++≥2+2=4,当且仅当a=b=2时等号成立,所以a+b的最小值为4,故选C.
    5.已知函数f (x)=ex在点(0,f (0))处的切线为l,动点(a,b)在直线l上,则2a+2-b的最小值是(  )
    A.4 B.2 C.2 D.
    答案 D
    解析 由题意得f′(x)=ex,
    f (0)=e0=1,
    k=f′(0)=e0=1.
    ∴切线方程为y-1=x-0,即x-y+1=0,
    ∴a-b+1=0,∴a-b=-1,
    ∴2a+2-b≥2=2=2=
    ,故选D.
    6.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F在半圆O上,点C在直径AB上,且OF⊥AB,设AC=a,BC=b,则该图形可以完成的无字证明为(  )

    A.≥(a>0,b>0)
    B.a2+b2≥2(a>0,b>0)
    C.≤(a>0,b>0)
    D.≤(a>0,b>0)
    答案 D
    解析 由AC=a,BC=b,可得圆O的半径r=,
    又OC=OB-BC=-b=,
    则FC2=OC2+OF2=+=,
    再根据题图知FO≤FC,即≤,当且仅当a=b时取等号.故选D.
    7.(多选)若x≥y,则下列不等式中正确的是(  )
    A.2x≥2y B.≥
    C.x2≥y2 D.x2+y2≥2xy
    答案 AD
    解析 由指数函数的单调性可知,当x≥y时,有2x≥2y,故A正确;
    当0>x≥y时,≥不成立,故B错误;
    当0≥x≥y时,x2≥y2不成立,故C错误;
    x2+y2-2xy=(x-y)2≥0成立,即x2+y2≥2xy成立,故D正确.
    8.(多选)设a>0,b>0,则下列不等式中一定成立的是(  )
    A.a+b+≥2 B.≥
    C.≥a+b D.(a+b)≥4
    答案 ACD
    解析 ∵a>0,b>0,
    ∴a+b+≥2+≥2,
    当且仅当a=b且2=,即a=b=时取等号,
    故A成立;
    ∵a+b≥2>0,
    ∴≤=,当且仅当a=b时取等号,
    ∴≥不一定成立,故B不成立;
    ∵≤=,当且仅当a=b时取等号,
    ==a+b-≥2-=,
    当且仅当a=b时取等号,
    ∴≥,∴≥a+b,故C一定成立;
    ∵(a+b)=2++≥4,
    当且仅当a=b时取等号,故D一定成立.
    9.函数y=(x>1)的最小值为________.
    答案 2+2
    解析 ∵x>1,∴x-1>0,
    ∴y==

    =(x-1)++2≥2+2.
    当且仅当x-1=,即x=+1时,等号成立.
    10.(2020·海南质检)设正项等比数列{an}的前n项和为Sn,若S7-S5=3(a4+a5),则4a3+的最小值为________.
    答案 4
    解析 设正项等比数列{an}的公比为q(q>0),
    ∵S7-S5=a7+a6=3(a4+a5),
    ∴=q2=3.
    ∴4a3+=4a3+=4a3+≥2=4,
    当且仅当4a3=,即a3=,a7=时等号成立.
    ∴4a3+的最小值为4.
    11.已知正数a,b满足a+b=2,求+的最小值.
    解 +=·


    =.
    当且仅当=,即a=,b=时取等号.
    所以+的最小值为.
    12.已知x>0,y>0,且2x+5y=20.
    (1)求u=lg x+lg y的最大值;
    (2)求+的最小值.
    解 (1)∵x>0,y>0,
    ∴由基本不等式,得2x+5y≥2.
    ∵2x+5y=20,∴2≤20,xy≤10,
    当且仅当2x=5y时,等号成立.
    因此有解得
    此时xy有最大值10.
    ∴u=lg x+lg y=lg(xy)≤lg 10=1.
    ∴当x=5,y=2时,u=lg x+lg y有最大值1.
    (2)∵x>0,y>0,
    ∴+=·=
    ≥=,
    由解得
    当且仅当x=,y=时,等号成立.
    ∴+的最小值为.

    13.(多选)设正实数a,b满足a+b=1,则(  )
    A.+有最小值 4
    B.有最大值
    C.+有最大值
    D.a2+b2 有最小值
    答案 ABCD
    解析 正实数a,b满足a+b=1,即有a+b≥2,
    可得0<ab≤,
    即有+=≥4,
    即当a=b时,+取得最小值4,无最大值;
    由0<≤,可得有最大值;
    由+==≤=,
    可得当a=b时,+取得最大值;
    由a2+b2≥2ab可得2(a2+b2)≥(a+b)2=1,
    则a2+b2≥,故当a=b=时,a2+b2取得最小值.
    综上可得ABCD均正确.
    14.(2019·北京师范大学附属中学模拟)已知a+b+c=3,且a,b,c都是正数.
    (1)求证: ++≥;
    (2)是否存在实数m,使得关于x的不等式-x2+mx+2≤a2+b2+c2对所有满足题设条件的正实数a,b,c恒成立?如果存在,求出m的取值范围;如果不存在,请说明理由.
    (1)证明 因为a+b+c=3,且a,b,c都是正数,
    所以++
    =[(a+b)+(b+c)+(c+a)]

    ≥(3+2+2+2)=,
    当且仅当a=b=c=1时,取等号,
    所以++≥得证.
    (2)解 因为a+b+c=3,
    所以(a+b+c)2=a2+b2+c2+2ab+2bc+2ca≤3(a2+b2+c2),
    因此a2+b2+c2≥3(当且仅当a=b=c=1时,取等号),
    所以(a2+b2+c2)min=3,
    由题意得-x2+mx+2≤3恒成立,
    即得x2-mx+1≥0恒成立,
    因此Δ=m2-4≤0⇒-2≤m≤2.
    故存在实数m∈[-2,2]使不等式成立.

    15.已知a>b>0,那么a2+的最小值为________.
    答案 4
    解析 由a>b>0,得a-b>0,
    ∴b(a-b)≤2=,
    ∴a2+≥a2+≥2=4,
    当且仅当b=a-b,且a2=,即a=,b=时取等号.
    ∴a2+的最小值为4.
    16.已知函数f (x)=(a∈R),若对于任意的x∈N*,f (x)≥3恒成立,则a的取值范围是________.
    答案 
    解析 对任意x∈N*,f (x)≥3,
    即≥3恒成立,
    即a≥-+3.
    设g(x)=x+,x∈N*,
    则g(x)=x+≥4,
    当且仅当x=2时等号成立,
    又g(2)=6,g(3)=,
    ∵g(2)>g(3),∴g(x)min=,
    ∴-+3≤-,
    ∴a≥-,故a的取值范围是.
    相关试卷

    高考数学(理数)一轮复习检测卷:1.7《指数与指数函数》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:1.7《指数与指数函数》 (学生版)

    高考数学一轮复习第一章 1.5: 这是一份高考数学一轮复习第一章 1.5,共16页。试卷主要包含了故选A.,在R上定义运算⊗等内容,欢迎下载使用。

    高考数学一轮复习第一章 1.3: 这是一份高考数学一轮复习第一章 1.3,共12页。试卷主要包含了简单的逻辑联结词等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学一轮复习第一章 1.7 试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map