试卷 2021年新疆塔城地区乌苏市中考数学一模试卷
展开A.﹣2℃B.+2℃C.+3℃D.﹣3℃
2.(5分)下列四个几何体中,左视图为圆的是( )
A.B.C.D.
3.(5分)若m2+2m=1,则4m2+8m﹣3的值是( )
A.4B.3C.2D.1
4.(5分)下列计算正确的是( )
A.3a•a3=a3B.a+a=a2C.(2a2)3=6a6D.a3÷a=a2
5.(5分)关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )
A.14B.7C.﹣2D.2
6.(5分)某乡镇决定对一段长6 000米的公路进行修建改造.根据需要,该工程在实际施工时增加了施工人员,每天修建的公路比原计划增加了50%,结果提前4天完成任务.设原计划每天修建x米,那么下面所列方程中正确的是( )
A.+4=B.=﹣4
C.﹣4=D.=+4
7.(5分)如图,在平面直角坐标系中,直线y=﹣2x和y=ax+1.2相交于点A(m,1),则不等式﹣2x<ax+1.2的解集为( )
A.x<﹣B.x<1C.x>1D.x>﹣
8.(5分)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为( )
A.B.C.D.
9.(5分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,反比例函数y=(x>0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为12,则k的值为( )
A.6B.5C.4D.3
二.填空题(共6小题,每小题5分,满分30分)
10.(5分)已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=18°,则∠2的度数是 .
11.(5分)分解因式:2a2﹣2= .
12.(5分)中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币.如图所示,则该硬币边缘镌刻的正多边形的外角的度数为 .
13.(5分)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 cm2.
14.(5分)我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是 寸.
15.(5分)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是 .
三.解答题(共8小题,满分75分)
16.(6分)计算:(﹣1)2+|﹣|+(π﹣3)0﹣.
17.(7分)已知x=+1,求x2﹣2x﹣3的值.
18.(8分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 时,四边形AMDN是矩形;
②当AM的值为 时,四边形AMDN是菱形.
19.(10分)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了 名学生;
(2)补全条形统计图;
(3)若该校共有1500名学生,估计爱好运动的学生有 人;
(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 .
20.(9分)如图,某数学兴趣小组为测量一棵古树的高度,在距离古树A点处测得古树顶端D的仰角为30°,然后向古树底端C步行20米到达点B处,测得古树顶端D的仰角为45°,且点A、B、C在同一直线上,求古树CD的高度.(已知:≈1.414,≈1.732,结果保留整数)
21.(11分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,该山区组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元,试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:
(1)若日销售量y(袋)是每袋的销售价x(元)的一次函数,求y与x之间的函数关系式;
(2)假设后续销售情况与试销阶段效果相同,设每日销售土特产的利润为w(元);
①求w与x之间的函数关系式;
②要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?
22.(11分)如图,AB是⊙O的直径,AC是⊙O的一条弦,点P是⊙O上一点,且PA=PC,PD∥AC,与BA的延长线交于点D.
(1)求证:PD是⊙O的切线;
(2)若tan∠PAC=,AC=12,求直径AB的长.
23.(13分)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
(1)求抛物线的表达式;
(2)当线段DF的长度最大时,求D点的坐标;
(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.
2021年新疆塔城地区乌苏市中考数学一模试卷
参考答案与试题解析
一.选择题(共9小题,每小题5分,满分45分,)
1.(5分)如果温度上升3℃,记作+3℃,那么温度下降2℃记作( )
A.﹣2℃B.+2℃C.+3℃D.﹣3℃
【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【解答】解:“正”和“负”相对,
如果温度上升3℃,记作+3℃,
温度下降2℃记作﹣2℃.
故选:A.
2.(5分)下列四个几何体中,左视图为圆的是( )
A.B.C.D.
【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,由此可确定答案.
【解答】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,
故选:D.
3.(5分)若m2+2m=1,则4m2+8m﹣3的值是( )
A.4B.3C.2D.1
【分析】把代数式4m2+8m﹣3变形为4(m2+2m)﹣3,再把m2+2m=1代入计算即可求出值.
【解答】解:∵m2+2m=1,
∴4m2+8m﹣3
=4(m2+2m)﹣3
=4×1﹣3
=1.
故选:D.
4.(5分)下列计算正确的是( )
A.3a•a3=a3B.a+a=a2C.(2a2)3=6a6D.a3÷a=a2
【分析】根据幂的运算法则和单项式除以单项式法则及合并同类项法则分别计算可得.
【解答】解:A、3a•a3=3a4,此选项错误;
B、a+a=2a,此选项错误;
C、(﹣2a)3=﹣8a3,此选项错误;
D、a3÷a=a2,此选项正确;
故选:D.
5.(5分)关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )
A.14B.7C.﹣2D.2
【分析】本题是关于x的不等式,应先只把x看成未知数,求得不等式的解集,再根据x≥4,求得m的值.
【解答】解:≤﹣2,
m﹣2x≤﹣6,
﹣2x≤﹣m﹣6,
x≥m+3,
∵关于x的一元一次不等式≤﹣2的解集为x≥4,
∴m+3=4,
解得m=2.
故选:D.
6.(5分)某乡镇决定对一段长6 000米的公路进行修建改造.根据需要,该工程在实际施工时增加了施工人员,每天修建的公路比原计划增加了50%,结果提前4天完成任务.设原计划每天修建x米,那么下面所列方程中正确的是( )
A.+4=B.=﹣4
C.﹣4=D.=+4
【分析】求的是工作效率,工作总量是6000,则是根据工作时间来列等量关系.关键描述语是提前4天完成,等量关系为:原计划时间﹣实际用时=4,根据等量关系列出方程.
【解答】解:设原计划每天修建x米,因为每天修建的公路比原计划增加了50% 所以现在每天修建x(1+50%)m,
﹣=4,
即:﹣4=,
故选:C.
7.(5分)如图,在平面直角坐标系中,直线y=﹣2x和y=ax+1.2相交于点A(m,1),则不等式﹣2x<ax+1.2的解集为( )
A.x<﹣B.x<1C.x>1D.x>﹣
【分析】根据点A(m,1)在直线y=﹣2x上,可以得到m的值,然后根据函数图象,可以得到在点A的右侧,直线y=﹣2x在直线y=ax+1.2的下方,从而可以得到不等式﹣2x<ax+1.2的解集.
【解答】解:∵点A(m,1)在直线y=﹣2x上,
∴1=﹣2m,
解得,m=﹣,
由图象可得,在点A的右侧,直线y=﹣2x在直线y=ax+1.2的下方,
∴不等式﹣2x<ax+1.2的解集为x>﹣,
故选:D.
8.(5分)如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为( )
A.B.C.D.
【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.
【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.
在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,
所以AC=3,
∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,
故选:D.
9.(5分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,反比例函数y=(x>0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为12,则k的值为( )
A.6B.5C.4D.3
【分析】根据题意,可以设出点C和点A的坐标,然后利用反比例函数的性质和菱形的性质即可求得k的值,本题得以解决.
【解答】解:设点A的坐标为(a,0),点C的坐标为(c,),
则,点D的坐标为(),
∴,
解得,k=4,
故选:C.
二.填空题(共6小题,每小题5分,满分30分)
10.(5分)已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=18°,则∠2的度数是 48° .
【分析】根据平行线的性质和直角三角形的性质解答即可.
【解答】解:∵a∥b,
∴∠2=∠1+∠CAB=18°+30°=48°,
故答案为:48°
11.(5分)分解因式:2a2﹣2= 2(a+1)(a﹣1) .
【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.
【解答】解:2a2﹣2,
=2(a2﹣1),
=2(a+1)(a﹣1).
12.(5分)中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币.如图所示,则该硬币边缘镌刻的正多边形的外角的度数为 40° .
【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以多边形的边数,就得到外角的度数.
【解答】解:∵正多边形的外角和是360°,
∴360°÷9=40°.
故答案为:40°.
13.(5分)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 2.4 cm2.
【分析】经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,可得点落入黑色部分的概率为0.6,根据边长为2cm的正方形的面积为4cm2,进而可以估计黑色部分的总面积.
【解答】解:∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,
∴点落入黑色部分的概率为0.6,
∵边长为2cm的正方形的面积为4cm2,
设黑色部分的面积为S,
则=0.6,
解得S=2.4(cm2).
∴估计黑色部分的总面积约为2.4cm2.
故答案为:2.4.
14.(5分)我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是 26 寸.
【分析】根据题意可得OE⊥AB,由垂径定理可得尺=5寸,设半径OA=OE=r寸,则OD=r﹣1,在Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解方程可得出木材半径,即可得出木材直径.
【解答】解:由题意可知OE⊥AB,
∵OE为⊙O半径,
∴尺=5寸,
设半径OA=OE=r寸,
∵ED=1,
∴OD=r﹣1,
则Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,
解得:r=13,
∴木材直径为26寸;
故答案为:26.
15.(5分)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是 ﹣3<x<1 .
【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.
【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,
∴抛物线与x轴的另一个交点为(1,0),
由图象可知,当y<0时,x的取值范围是﹣3<x<1.
故答案为:﹣3<x<1.
三.解答题(共8小题,满分75分)
16.(6分)计算:(﹣1)2+|﹣|+(π﹣3)0﹣.
【分析】原式先计算乘方运算,再算加减运算即可得到结果.
【解答】解:(﹣1)2+|﹣|+(π﹣3)0﹣=1++1﹣2=.
17.(7分)已知x=+1,求x2﹣2x﹣3的值.
【分析】将x=变形为x﹣1=,通过平方凑出x2+2x的值,整体代入即可.
【解答】解:∵x=+1
∴x﹣1=
两边平方得
(x﹣1)2=3
∴x2﹣2x=2
∴x2﹣2x﹣3=2﹣3=﹣1
18.(8分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 1 时,四边形AMDN是矩形;
②当AM的值为 2 时,四边形AMDN是菱形.
【分析】(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;
(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;
②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.
【解答】(1)证明:∵四边形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
又∵点E是AD边的中点,
∴DE=AE,
∴△NDE≌△MAE,
∴ND=MA,
∴四边形AMDN是平行四边形;
(2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:
∵四边形ABCD是菱形,
∴AB=AD=2.
∵AM=AD=1,
∴∠ADM=30°
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四边形AMDN是矩形;
故答案为:1;
②当AM的值为2时,四边形AMDN是菱形.理由如下:
∵AM=2,
∴AM=AD=2,
∴△AMD是等边三角形,
∴AM=DM,
∴平行四边形AMDN是菱形,
故答案为:2.
19.(10分)某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了 100 名学生;
(2)补全条形统计图;
(3)若该校共有1500名学生,估计爱好运动的学生有 600 人;
(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 .
【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;
(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形.
(3)利用样本估计总体即可估计爱好运动的学生人数.
(4)根据爱好阅读的学生人数所占的百分比即可估计选出的恰好是爱好阅读的学生的概率.
【解答】解:(1)爱好运动的人数为40,所占百分比为40%
∴共调查人数为:40÷40%=100
(2)爱好上网的人数所占百分比为10%
∴爱好上网人数为:100×10%=10,
∴爱好阅读人数为:100﹣40﹣20﹣10=30,
补全条形统计图,如图所示,
(3)爱好运动的学生人数所占的百分比为40%,
∴估计爱好运动的学生人数为:1500×40%=600
(4)爱好阅读的学生人数所占的百分比30%,
∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为
故答案为:(1)100;(3)600;(4)
20.(9分)如图,某数学兴趣小组为测量一棵古树的高度,在距离古树A点处测得古树顶端D的仰角为30°,然后向古树底端C步行20米到达点B处,测得古树顶端D的仰角为45°,且点A、B、C在同一直线上,求古树CD的高度.(已知:≈1.414,≈1.732,结果保留整数)
【分析】设CB=CD=x,根据tan30°=即可得出答案.
【解答】解:由题意可知,AB=20,∠DAB=30°,∠C=90°,∠DBC=45°,
∵△BCD是等腰直角三角形,
∴CB=CD,
设CD=x,则BC=x,AC=20+x,
在Rt△ACD中,
tan30°===,
解得x=10+10≈10×1.732+10=27.32≈27,
∴CD=27,
答:CD的高度为27米.
21.(11分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,该山区组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元,试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:
(1)若日销售量y(袋)是每袋的销售价x(元)的一次函数,求y与x之间的函数关系式;
(2)假设后续销售情况与试销阶段效果相同,设每日销售土特产的利润为w(元);
①求w与x之间的函数关系式;
②要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?
【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可;
(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.
【解答】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得
,解得,
故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40;
(2)①依题意,设利润为w元,得
w=(x﹣10)(﹣x+40)=﹣x2+50x﹣400;
②w=﹣x2+50x﹣400=﹣(x﹣25)2+225;
∵﹣1<0
∴当x=25时,w取得最大值,最大值为225
故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.
22.(11分)如图,AB是⊙O的直径,AC是⊙O的一条弦,点P是⊙O上一点,且PA=PC,PD∥AC,与BA的延长线交于点D.
(1)求证:PD是⊙O的切线;
(2)若tan∠PAC=,AC=12,求直径AB的长.
【分析】(1)连接PO,交AC于H,由等腰三角形的性质可得∠PAC=∠PCA,∠PAO=∠OPA,由平行线的性质和圆周角定理可得∠DPA=∠PAC=∠PCA=∠PBA,∠APB=90°,可证∠DPO=90°,可得结论;
(2)由等腰三角形的性质可求AH=HC=AC=6,由锐角三角函数可求PH=4,由勾股定理可求AO的长,即可求解.
【解答】解:(1)连接PO,交AC于H,
∵PA=PC,
∴∠PAC=∠PCA,
∵∠PCA=∠PBA,
∴∠PAC=∠PCA=∠PBA,
∵DP∥AC,
∴∠DPA=∠PAC=∠PCA=∠PBA,
∵OA=OP,
∴∠PAO=∠OPA,
∵AB是直径,
∴∠APB=90°,
∴∠PAB+∠ABP=90°,
∴∠OPA+∠DPA=90°,
∴∠DPO=90°,
又∵OP是半径,
∴DP是⊙O的切线;
(2)∵DP∥AC,∠DPO=90°,
∴∠DPO=∠AHO=90°,
又∵PA=PC,
∴AH=HC=AC=6,
∵tan∠PAC==,
∴PH=×AH=4,
∵AO2=AH2+OH2,
∴AO2=36+(OA﹣4)2,
∴OA=,
∴AB=2OA=13.
23.(13分)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
(1)求抛物线的表达式;
(2)当线段DF的长度最大时,求D点的坐标;
(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.
【分析】(1)点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),即可求解;
(2)点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,即可求解;
(3)以点O,D,E为顶点的三角形与△BOC相似,则,即可求解.
【解答】解:(1)设OB=t,则OA=2t,则点A、B的坐标分别为(2t,0)、(﹣t,0),
则x==(2t﹣t),解得:t=1,
故点A、B的坐标分别为(2,0)、(﹣1,0),
则抛物线的表达式为:y=a(x﹣2)(x+1)=ax2+bx+2,
解得:a=﹣1,
故抛物线的表达式为:y=﹣x2+x+2;
(2)对于y=﹣x2+x+2,令x=0,则y=2,故点C(0,2),
由点A、C的坐标得,直线AC的表达式为:y=﹣x+2,
设点D的横坐标为m,则点D(m,﹣m2+m+2),则点F(m,﹣m+2),
则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,
∵﹣1<0,故DF有最大值,DF最大时m=1,
∴点D(1,2);
(3)存在,理由:
点D(m,﹣m2+m+2)(m>0),则OE=m,DE=﹣m2+m+2,
以点O,D,E为顶点的三角形与△BOC相似,
则,即=或2,即=或2,
解得:m=1或﹣2(舍去)或或(舍去),
故m=1或.
x(元)
15
20
30
…
y(袋)
25
20
10
…
x(元)
15
20
30
…
y(袋)
25
20
10
…
2023年新疆克州中考数学一模试卷(含解析): 这是一份2023年新疆克州中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年新疆塔城地区乌苏市七年级(上)期末数学试卷(解析版): 这是一份2021-2022学年新疆塔城地区乌苏市七年级(上)期末数学试卷(解析版),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年新疆塔城地区乌苏市九年级(上)期末数学试卷(解析版): 这是一份2021-2022学年新疆塔城地区乌苏市九年级(上)期末数学试卷(解析版),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。