|试卷下载
搜索
    上传资料 赚现金
    人教A版高中数学选修1-1课时提升作业 十四 2.2.2 双曲线的简单几何性质 第2课时 双曲线方程及性质的应用 精讲优练课型 Word版含答案
    立即下载
    加入资料篮
    人教A版高中数学选修1-1课时提升作业 十四 2.2.2 双曲线的简单几何性质 第2课时 双曲线方程及性质的应用 精讲优练课型 Word版含答案01
    人教A版高中数学选修1-1课时提升作业 十四 2.2.2 双曲线的简单几何性质 第2课时 双曲线方程及性质的应用 精讲优练课型 Word版含答案02
    人教A版高中数学选修1-1课时提升作业 十四 2.2.2 双曲线的简单几何性质 第2课时 双曲线方程及性质的应用 精讲优练课型 Word版含答案03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标A选修1-12.2双曲线第2课时精练

    展开
    这是一份高中数学人教版新课标A选修1-12.2双曲线第2课时精练,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    温馨提示:

        此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。

    课时提升作业 十四

    双曲线方程及性质的应用

    一、选择题(每小题5分,共25分)

    1.(2015·全国卷)已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点,若·<0,则y0的取值范围是 (  )

    A.     B.

    C.    D.

    【解析】选A.因为F1(-,0),F2(,0),-=1,

    所以·=(--x0,-y0)·(-x0,-y0)=+-3<0,

    即3-1<0,解得-<y0<.

    2.(2016·重庆高二检测)已知双曲线x2-y2=2,过定点P(2,0)作直线l与双曲线有且只有一个交点,则这样的直线l的条数为 (  )

    A.1     B.2     C.3     D.4

    【解析】选B.因为点P(2,0)在双曲线含焦点的区域内,故只有当直线l与渐近线平行时才会与双曲线只有一个交点,故这样的直线只有两条.

    补偿训练】过双曲线x2-=1的右焦点作直线与双曲线交于A,B两点,若|AB|=16,这样的直线有 (  )

    A.一条        B.两条          C.三条        D.四条

    【解析】选C.过右焦点且垂直于x轴的弦长为16,因为|AB|=16,所以当l与双曲线的两交点都在右支上时只有一条.又因为实轴长为2,16>2,所以当l与双曲线的两交点在左、右两支上时应该有两条,共三条.

    3.(2016·泉州高二检测)若曲线C上存在点M,使M到平面内两点A(-5,0),B(5,0)距离之差为8,则称曲线C为好曲线.以下曲线不是好曲线的是 (  )

    A.x+y=5      B.x2+y2=9

    C.+=1      D.x2=16y

    【解析】选B.因为M到平面内两点A(-5,0),B(5,0)距离之差为8,所以M的轨迹是以A(-5,0),B(5,0)为焦点的双曲线的右支,方程为-=1(x4),A:直线x+y=5过点(5,0)满足题意;B:x2+y2=9的圆心为(0,0),半径为3,与M的轨迹没有交点,不满足题意;C:+=1的右顶点(5,0),满足题意;D:方程代入-=1,可得y-=1,即y2-9y+9=0,所以y=3,满足题意.

    4.(2016·青岛高二检测)过双曲线-=1(a>0,b>0)的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B,C.若=,则双曲线的离心率是 (  )

    A.    B.    C.    D.

    【解析】选C.右顶点为A(a,0),

    则直线方程为x+y-a=0,

    可求得直线与两渐近线的交点坐标B,C,则=,

    =.

    又2=,所以2a=b,所以e=.

    补偿训练】已知F1, F2分别是双曲线-=1(a>0,b>0)的左、右焦点,过F1作垂直于x轴的直线交双曲线于A,B两点.若ABF2为直角三角形,则双曲线的离心率为 (  )

    A.1+      B.1±

    C.       D.±1

    【解析】选A.因为ABF2是直角三角形,

    所以AF2F1=45°,|AF1|=|F1F2|,=2c.

    所以b2=2ac,所以c2-a2=2ac,

    所以e2-2e-1=0.

    解得e=1±.又e>1,所以e=1+.

    5.(2016·沈阳高二检测)已知双曲线E的中心在原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为N(-12,-15),则E的方程为 (  )

    A.-=1     B.-=1

    C.-=1     D.-=1

    【解析】选B.由已知条件易得直线l的斜率k==1,设双曲线方程为-=1(a>0,b>0),A(x1,y1),B(x2,y2),则-=1,-=1,两式相减并结合x1+x2=-24,y1+y2=-30得=,从而=1,又因为a2+b2=c2=9,故a2=4,b2=5,所以E的方程为-=1.

    【拓展延伸】解决与双曲线弦的中点有关问题的两种方法

    (1)根与系数的关系法:联立直线方程和双曲线方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决.

    (2)点差法:利用端点在曲线上,坐标满足方程,将端点坐标分别代入双曲线方程,然后作差,构造出中点坐标和斜率的关系,可求斜率k=.这是解决与中点有关问题的简便而有效的方法.求弦中点轨迹问题,此方法依然有效.

    二、填空题(每小题5分,共15分)

    6.(2016·济南高二检测)已知双曲线-=1(a>0,b>0)和椭圆+=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为      .

    【解析】由题意知,椭圆的焦点坐标是(±,0),离心率是.故在双曲线中c=,e==,故a=2,b2=c2-a2=3,故所求双曲线的方程是-=1.

    答案:-=1

    7.已知双曲线C:-=1(a>0,b>0)的右焦点为F,过F且斜率为的直线交双曲线C于A,B两点.若=4,则双曲线C的离心率为    .

    【解析】设A,B两点坐标分别为(x1,y1),(x2,y2),

    得(b2-3a2)y2+2b2cy+3b4=0,

    因为b2-3a20,

    所以y1+y2=,y1y2=,

    =4y1=-4y2,

    所以-3y2=,-4=,

    所以y2=,

    代入-4=,

    16c2=27a2-9b2,b2=c2-a2,

    所以16c2=27a2-9c2+9a2,

    所以36a2=25c2,所以e2=,

    所以e=.

    答案:

    8.已知直线l:x-y+m=0与双曲线x2-=1交于不同的两点A,B,若线段AB的中点在圆x2+y2=5上,则m的值是   .

    【解析】由

    消去y得x2-2mx-m2-2=0.

    Δ=4m2+4m2+8=8m2+8>0.

    设A(x1,y1),B(x2,y2).

    则x1+x2=2m,y1+y2=x1+x2+2m=4m,

    所以线段AB的中点坐标为(m,2m),

    又因为点(m,2m)在圆x2+y2=5上,

    所以5m2=5,所以m=±1.

    答案:±1

    补偿训练】双曲线-=1的两个焦点为F1,F2,点P在双曲线上,若PF1PF2,则点P到x轴的距离为    .

    【解析】设|PF1|=m,|PF2|=n(m>n),所以a=3,b=4,c=5.

    由双曲线的定义知,m-n=2a=6,又PF1PF2.

    所以PF1F2为直角三角形.

    即m2+n2=(2c)2=100.

    由m-n=6,得m2+n2-2mn=36,

    所以2mn=m2+n2-36=64,mn=32.

    设点P到x轴的距离为d,

    =d|F1F2|=|PF1|·|PF2|,

    d·2c=mn.所以d===3.2,

    即点P到x轴的距离为3.2.

    答案:3.2

    三、解答题(每小题10分,共20分)

    9.双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F且垂直于l1的直线分别交l1,l2于A,B两点.已知||,||,||成等差数列,且同向.

    (1)求双曲线的离心率.

    (2)设AB被双曲线所截得的线段的长为4,求双曲线的方程.

    【解析】(1)设OA=m-d,AB=m,OB=m+d,双曲线方程为-=1.

    由勾股定理可得(m-d)2+m2=(m+d)2,

    得d=m,tanAOF=,

    tanAOB=tan2AOF==.

    由倍角公式得=,

    解得=,则离心率e=.

    (2)直线AB的方程为y=-(x-c),与双曲线方程-=1联立消y并将a=2b,c=b代入,

    化简有x2-x+21=0.

    x1+x2=,x1·x2=,

    设交点A,B两点的坐标分别为(x1,y1),(x2,y2),

    则|AB|=|x1-x2|

    ==4,

    将数值代入,得4=,

    解得b=3,故所求的双曲线方程为-=1.

    10.已知直线y=ax+1与双曲线3x2-y2=1交于A,B两点.

    (1)若以AB为直径的圆过坐标原点,求实数a的值.

    (2)是否存在这样的实数a,使A,B两点关于直线y=x对称?若存在,请求出a的值;若不存在,请说明理由.

    【解析】(1)由消去y得,

    (3-a2)x2-2ax-2=0.  

    依题意

    即-<a<且a≠±  

    设A(x1,y1),B(x2,y2),

    因为以AB为直径的圆过原点,所以OAOB.

    所以x1x2+y1y2=0,y1y2=a2x1x2+a(x1+x2)+1,

    ③④(a2+1)·+a·+1=0.

    解得a=±1且满足.

    所以实数a的值为±1.

    (2)假设存在实数a,使A,B关于y=x对称,

    则直线y=ax+1与y=x垂直,所以a=-2.

    直线l的方程为y=-2x+1.

    将a=-2代入得x1+x2=4.

    所以AB中点横坐标为2,

    纵坐标为y=-2×2+1=-3.

    但AB中点(2,-3)不在直线y=x上.

    即不存在实数a,使A,B关于直线y=x对称.

    一、选择题(每小题5分,共10分)

    1.(2016·郑州高二检测)直线y=x与双曲线C:-=1(a>0,b>0)左右两支分别交于M,N两点,F是双曲线C的右焦点,O是坐标原点,若||=||,则双曲线的离心率等于 (  )

    A.+      B.+1

    C.+1      D.2

    【解析】选B.由题知|MO|=|NO|=|FO|,

    所以MFN为直角三角形,且MFN=90°,

    取左焦点为F0,连结NF0,MF0,由双曲线的对称性知,四边形NFMF0为平行四边形.

    又因为MFN=90°,所以四边形NFMF0为矩形,

    所以|MN|=|F0F|=2c,

    又因为直线MN的倾斜角为60°,即NOF=60°,

    所以NMF=30°,

    所以|NF|=|MF0|=c,|MF|=c,

    由双曲线定义知|MF|-|MF0|=c-c=2a,

    所以e==+1.

    补偿训练】过双曲线M:x2-=1(b>0)的左顶点A作斜率为1的直线l.若l与双曲线M的两条渐近线分别相交于点B,C,且B是AC的中点,则双曲线M的离心率为 (  )

    A.    B.    C.    D.

    【解析】选D.由题意可知A(-1,0),故直线l的方程为y=x+1.两条渐近线方程为y=±bx,由已知联立得B,同理可得C,又B是AC的中点,故2×=0+,解得b=3.故c==.

    所以e==.

    2.(2016·黄冈高二检测)已知平面上两点M(-5,0)和N(5,0),若直线上存在点P使|PM|-|PN|=6,则称该直线为单曲型直线,下列直线中是单曲型直线的是 (  )

    y=x+1;   y=2;   y=x;   y=2x+1.

    A.①③   B.③④  C.②③  D.①②

    【解析】选D.因为|PM|-|PN|=6,所以点P在以M,N为焦点的双曲线的右支上,即-=1(x>0).

    对于,联立消y得7x2-18x-153=0,因为Δ=(-18)2-4×7×(-153)>0,所以y=x+1是单曲型直线.对于,联立消y得x2=,所以y=2是单曲型直线.

    对于,联立整理得0=1,不成立,所以y=x不是单曲型直线.

    对于,联立消y得20x2+36x+153=0,因为Δ=362-4×20×153<0,所以y=2x+1不是单曲型直线.

    二、填空题(每小题5分,共10分)

    3.(2016·福州高二检测)设双曲线-=1的右顶点为A,右焦点为F.过点F且与双曲线的一条渐近线平行的直线与另一条渐近线交于点B,则AFB的面积为     .

    【解题指南】由双曲线的方程可得a,b的值,进而可得c的值,得到A,F两点的坐标.因此可得BF的方程为y=±(x-5),与双曲线的渐近线方程联立,得到点B的坐标,即可算出AFB的面积.

    【解析】根据题意,得a2=9,b2=16,

    所以c==5,且A(3,0),F(5,0).

    因为双曲线-=1的渐近线方程为y=±x.

    所以直线BF的方程为y=±(x-5).

    若直线BF的方程为y=(x-5),

    与渐近线y=-x交于点B,

    此时SAFB=|AF|·|yB|=×2×=;

    若直线BF的方程为y=-(x-5),与渐近线y=x交于点B.

    此时SAFB=|AF|·|yB|=×2×=.

    因此,AFB的面积为.

    答案:

    4.(2016·浙江高考)设双曲线x2-=1的左、右焦点分别为F1,F2.若点P在双曲线上,且F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是    .

    【解析】由已知a=1,b=,c=2,则e==2,设P(x,y)是双曲线上任意一点,由对称性不妨设P在右支上,则1<x<2,|PF1|=2x+1,|PF2|=2x-1,

    F1PF2为锐角,则|PF1|2+|PF2|2>|F1F2|2即(2x+1)2+(2x-1)2>42,解得x>,

    所以<x<2,所以|PF1|+|PF2|=4x(2,8).

    答案:(2,8)

    三、解答题(每小题10分,共20分)

    5.(2016·南昌高二检测)已知双曲线C:-=1(a>0,b>0).如图,B是右顶点,F是右焦点,点A在x轴正半轴上,且满足||,||,||成等比数列,过F作双曲线C在第一、三象限的渐近线的垂线l,垂足为P.

    (1)求证:·=·.

    (2)若l与双曲线C的左右两支分别相交于点E,D,求双曲线离心率e的取值范围.

    【解析】(1)双曲线的渐近线为y=±x,F(c,0),

    所以直线l的斜率为-,

    所以直线l:y=-(x-c).

    得P,

    因为||,||,||成等比数列,

    所以xA·c=a2,所以xA=,

    A,=,=,

    =

    所以·=-,·=-,

    ·=·.

    (2),

    x2+2cx-=0,

    x1x2=,

    因为点E,D分别在左右两支上,所以<0,所以b2>a2,所以e2>2,所以e>.

    6.(2016·哈尔滨高二检测)已知双曲线-=1(a>0,b>0)的离心率e=,过点A(0,-b)和B(a,0)的直线与原点的距离是.

    (1)求双曲线的方程及渐近线方程.

    (2)若直线y=kx+5(k0)与双曲线交于不同的两点C,D,且两点都在以A为圆心的同一个圆上,求k的值.

    【解析】(1)直线AB的方程为+=1,即bx-ay-ab=0.又原点O到直线AB的距离=ab=c,

    所求双曲线方程为-y2=1,

    渐近线方程为y=±x.

    (2)由(1)可知A(0,-1),设C(x1,y1),D(x2,y2),

    由|AC|=|AD|得:

    所以3+3+(y1+1)2=3+3+(y2+1)2,

    整理得:(y1-y2)=0,

    因为k0,所以y1y2,所以y1+y2=-,

    又由

    (1-3k2)y2-10y+25-3k2=0,

    所以y1+y2==-,得k2=7,

    Δ=100-4(1-3k2)(25-3k2)>00<k2<,k2=7满足此条件,故满足题设的k=±.

    【一题多解】

    (2)由(1-3k2)x2-30kx-78=0,

    设C(x1,y1),D(x2,y2),CD的中点M(x0,y0),

    因为|AC|=|AD|,所以M在CD的中垂线AM上,

    因为

    lAM:y+1=-x,所以+1=-·,

    整理得k2=7,解得k=±.(k2=7满足1-3k20且Δ>0).

    关闭Word文档返回原板块

     

    相关试卷

    数学选修1-12.2双曲线第2课时精练: 这是一份数学选修1-12.2双曲线第2课时精练,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    高中2.1椭圆第2课时课后练习题: 这是一份高中2.1椭圆第2课时课后练习题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    高中数学人教版新课标A选修1-12.2双曲线第2课时随堂练习题: 这是一份高中数学人教版新课标A选修1-12.2双曲线第2课时随堂练习题,共2页。试卷主要包含了已知双曲线C等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教A版高中数学选修1-1课时提升作业 十四 2.2.2 双曲线的简单几何性质 第2课时 双曲线方程及性质的应用 精讲优练课型 Word版含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map