试卷 第2讲 方程与不等式(含解析)-2021年九年级中考数学一轮复习专题训练(浙教版)
展开方程与不等式巩固练习
一.选择题(共20小题)
1.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有( )
A.2个 B.3个 C.4个 D.5个
2.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员按一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒,设听到回响时,汽车离山谷x米,根据题意,列出方程为( )
A.2x+4×20=4×340 B.2x﹣4×72=4×340
C.2x+4×72=4×340 D.2x﹣4×20=4×340
3.如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度为别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,求隔板抽出后水面静止时,箱内的水面高度为多少公分( )
A.43 B.44 C.45 D.46
4.已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?( )
A.6 B.9 C.12 D.18
5.已知关于x,y的方程组,其中﹣3≤a≤1,给出下列结论:
①是方程组的解;
②当a=﹣2时,x,y的值互为相反数;
③当a=1时,方程组的解也是方程x+y=4﹣a的解;
④若x≤1,则1≤y≤4.
其中正确的是( )
A.①② B.②③ C.②③④ D.①③④
6.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( )
A.
B.
C.
D.
7.同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地( )
A.120km B.140km C.160km D.180km
8.若关于x的一元二次方程(k﹣2)x2﹣2kx+k=6有实数根,则k的取值范围为( )
A.k≥0 B.k≥0且k≠2 C.k D.k且k≠2
9.已知函数y的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2判断正确的是( )
A.x1+x2>1,x1•x2>0
B.x1+x2<0,x1•x2>0
C.0<x1+x2<1,x1•x2>0
D.x1+x2与x1•x2的符号都不确定
10.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程( )
A.180(1﹣x)2=461 B.180(1+x)2=461
C.368(1﹣x)2=442 D.368(1+x)2=442
11.制造某种产品,原来每件的成本是700元,由于连续两次降低成本,现在的成本是448元,如果每次降低成本的百分数相同,则每次降低成本的百分数为( )
A.10% B.20% C.30% D.40%
12.若关于x的分式方程无解,则m的值为( )
A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5
13.已知x为实数,且(x2+3x)=2,则x2+3x的值为( )
A.1 B.1或﹣3 C.﹣3 D.﹣1或3
14.若方程1有增根,则它的增根是( )
A.0 B.1 C.﹣1 D.1和﹣1
15.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是( )
A. B.
C. D.
16.如图所示的电路的总电阻为10Ω,若R1=2R2,则R1,R2的值分别是( )
A.R1=30Ω,R2=15Ω B.R1Ω,R2Ω
C.R1=15Ω,R2=30Ω D.R1Ω,R2Ω
17.已知方程组:的解x,y满足2x+y≥0,则m的取值范围是( )
A.m B.m C.m≥1 D.m≤1
18.如图所示是测量一物体体积的过程:
步骤一,将180mL的水装进一个容量为300mL的杯子中.
步骤二,将三个相同的玻璃球放入水中,结果水没有满.
步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.
根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1mL=1cm3)( )
A.10cm3以上,20cm3以下 B.20cm3以上,30cm3以下
C.30cm3以上,40cm3以下 D.40cm3以上,50cm3以下
19.若不等式组无解,则实数a的取值范围是( )
A.a≥﹣1 B.a<﹣1 C.a≤1 D.a≤﹣1
20.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )
A.4种 B.3种 C.2种 D.1种
二.填空题(共20小题)
21.关于x的方程kx﹣1=2x的解为正实数,则k的取值范围是 .
22.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是 元.
23.为了奖励兴趣小组的同学,张老师花92元钱购买了《智力大挑战》和《数学趣题》两种书.已知《智力大挑战》每本18元,《数学趣题》每本8元,则《数学趣题》买了 本.
24.若二元一次方程组的解为,则a﹣b= .
25.二元一次方程组x+2的解是 .
26.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为 .
27.已知:222,332,442,552,…,若10102符合前面式子的规律,则a+b= .
28.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排 名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.
29.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= .
30.一元二次方程x(x﹣2)=x﹣2的根是 .
31.关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是 .
32.已知α,β为方程x2+4x+2=0的二实根,则α3+14β+50= .
33.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为 .
34.某种商品原价50元.因销售不畅,3月份降价10%,从4月份开始涨价,5月份的售价为64.8元,则4,5月份两个月平均涨价率为 %.
35.已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a的值为 .
36.试写出有一个根为1的一元高次方程 (只需写1个).
37.方程x的解是x= .
38.若关于x的分式方程3无解,则实数m= .
39.分式方程的解是 .
40.用换元法解分式方程x22(x)﹣1=0时,如果设y=x,那么原方程可化为关于y的一元二次方程的一般形式是 .
三.解答题(共10小题)
41.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.
42.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?
大意:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?
43.已知关于x,y的方程组的解为,求m,n的值.
44.解方程组:
45.某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%,问该校去年有寄宿学生与走读学生各多少名?
46.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.
(1)求该旅行团中成人与少年分别是多少人?
(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.
①若由成人8人和少年5人带队,则所需门票的总费用是多少元?
②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.
46.在实数范围内定义运算“⊕”,其法则为:a⊕b=a2﹣b2,求方程(4⊕3)⊕x=24的解.
48.(1)计算:2tan60°(2)0+()﹣1.
(2)解方程:x2﹣2x﹣1=0.
49.解方程:(x+2)(x+3)=1.
50.(1)计算:4sin60°+(π﹣2)0﹣()﹣2.
(2)x为何值时,两个代数式x2+1,4x+1的值相等?
【中考一轮复习】2023年中考数学复习训练——第10讲 方程与不等式综合(含解析): 这是一份【中考一轮复习】2023年中考数学复习训练——第10讲 方程与不等式综合(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
试卷 第11讲 图形的对称(含解析)-2021年九年级中考数学一轮复习专题训练(浙教版): 这是一份试卷 第11讲 图形的对称(含解析)-2021年九年级中考数学一轮复习专题训练(浙教版),文件包含第11讲图形的对称巩固练习docx、第11讲图形的对称巩固练习解析版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
试卷 第10讲 图形的平移(含解析)-2021年九年级中考数学一轮复习专题训练(浙教版): 这是一份试卷 第10讲 图形的平移(含解析)-2021年九年级中考数学一轮复习专题训练(浙教版),文件包含第10讲图形的平移巩固练习docx、第10讲图形的平移巩固练习解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。