2020-2021学年2.2椭圆教案及反思
展开高三数学备课组
双曲线
课时:17
课型:复习课
1.双曲线(a>0,b>0)的两个顶点为,,与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是.
2.过双曲线(a>0,b>)上任一点任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且(常数).
3.若P为双曲线(a>0,b>0)右(或左)支上除顶点外的任一点,F1, F 2是焦点, , ,则(或).
4.设双曲线(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记, ,,则有.(可由正弦定理推导)
5.若双曲线(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤时,可在双曲线上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.
6.P为双曲线(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线内一定点,则,当且仅当三点共线且和在y轴同侧时,等号成立.
7.双曲线(a>0,b>0)与直线有公共点的充要条件是.
8.已知双曲线(b>a >0),O为坐标原点,P、Q为双曲线上两动点,且.
(1);
(2)|OP|2+|OQ|2的最小值为;
(3)的最小值是.
9.过双曲线(a>0,b>0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则.
10.已知双曲线(a>0,b>0),A、B是双曲线上的两点,线段AB的垂直平分线与x轴相交于点, 则或.
11.设P点是双曲线(a>0,b>0)上异于实轴端点的任一点,F1、F2为其焦点记则有以下结论。
(1).
(2) .
12.设A、B是双曲线(a>0,b>0)的长轴两端点,P是双曲线上的一点,, ,,c、e分别是双曲线的半焦距离心率,则有(1).
(2) .
(3) .
13.已知双曲线(a>0,b>0)的右准线与x轴相交于点,过双曲线右焦点的直线与双曲线相交于A、B两点,点在右准线上,且轴,则直线AC经过线段EF 的中点.
14.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.
15.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.
16.双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).
17.双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.
18.双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.
数学人教版新课标A2.4抛物线教学设计: 这是一份数学人教版新课标A2.4抛物线教学设计,共6页。
人教版新课标A选修2-12.4抛物线教案: 这是一份人教版新课标A选修2-12.4抛物线教案,共4页。
高中人教版新课标A2.3双曲线教案及反思: 这是一份高中人教版新课标A2.3双曲线教案及反思,共4页。