苏科版七年级下册第9章 从面积到乘法公式综合与测试精品同步达标检测题
展开一、选择题(本大题共7小题,每小题3分,共21分;在每个小题列出的四个选项中,只有一项符合题意)
1.下列计算正确的是( )
A.3ab-2ab=1B.(3a2)2=9a4
C.a6÷a2=a3D.3a2·2a=6a2
2.下列由左边到右边的变形,属于因式分解的是( )
A.(a+5)(a-5)=a2-25
B.mx+my+2=m(x+y)+2
C.x2-9=(x+3)(x-3)
D.2x2+1=2x21+12x2
3.计算(x-5y)(3x+4y)的结果正确的是( )
A.3x2-20y2
B.3x2-15xy+20y2
C.3x2-11xy-20y2
D.3x2+20y2
4.下列因式分解正确的是( )
A.x2-x=x(x+1)
B.a2-3a-4=(a+4)(a-1)
C.a2+2ab-b2=(a-b)2
D.x2-y2=(x+y)(x-y)
5.若a+b=3,则2a2+4ab+2b2-6的值是( )
A.12B.6C.3D.0
6.长方形一边的长为3m+2n,与其相邻的另一边的长比它长m-n,则这个长方形的面积是( )
A.12m2+11mn+2n2
B.12m2+5mn+2n2
C.12m2-5mn+2n2
D.12m2+11mn+n2
7.如图,利用面积的等量关系验证的公式是( )
A.a2-b2=(a+b)(a-b)
B.(a-b)2=a2-2ab+b2
C.(a+2b)(a-b)=a2+ab-2b2
D.(a+b)2=a2+2ab+b2
二、填空题(本大题共8小题,每小题3分,共24分)
8.计算:-t(3t-2t2)= .
9.9x3y2+12x2y3中各项的公因式是 .
10.把多项式a3-6a2b+9ab2分解因式的结果是 .
11.若a2+b2=5,ab=2,则(a+b)2= .
12.计算(2x2y)2·xy的结果是 .
13.如果3a2+4a-1=0,那么(2a+1)2-(a-2)(a+2)的结果是 .
14.若x2+x+m=(x-3)(x+n)对x恒成立,则n= .
15.如果x-a与x-b的乘积中不含x的一次项,那么a与b的关系为 .
三、解答题(共55分)
16.(8分)计算:
(1)(-3x2y)2·-23xyz·34xz2;
(2)6m·3m2-23m-1;
(3)(a+b)(3a-2b)-b(a-b);
(4)(2x+3y)2-(2x+y)(2x-y).
17.(6分)把下列各式分解因式:
(1)3x2-6xy+x;
(2)4mn2-4m2n-n3.
18.(10分)(1)先化简,再求值:(x-5y)(-x-5y)-(-x+5y)2,其中x=0.5,y=-1;
(2)已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.
19.(9分)如图,在长为4x+3,宽为3x+5的长方形纸片中剪去两个边长分别为2x-1,x+2的正方形,求阴影部分的面积.
20.(10分)已知x+y=4,xy=2,试求下列各式的值:
(1)x2+y2;(2)x4+y4.
21.(12分)阅读理解题:
定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.和我们所学的数合起来就叫做复数,表示为a+bi(a,b为我们所学过的数),a叫做这个复数的实部,b叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.
例如计算:(2+i)+(3-4i)=5-3i.
(1)填空:i3= ,i4= .
(2)计算:①(2+i)(2-i);②(2+i)2.
(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知(x+y)+3i=(1-x)-yi(x,y为我们所学过的数),求x,y的值.
(4)试一试:请利用以前学习的有关知识将1+i1-i化简成a+bi的形式.
参考答案
1.解析: B 3ab-2ab=ab,故A错误;(3a2)2=9a4,故B正确;a6÷a2=a4,故C错误;3a2·2a=6a3,故D错误.故选B.
2.C
3.解析: C 原式=3x2+4xy-15xy-20y2=3x2-11xy-20y2.故选C.
4.解析: D 原式=x(x-1),故A错误;原式=(a-4)(a+1),故B错误;a2+2ab-b2,不能分解因式,故C错误;原式=(x+y)(x-y),故D正确.故选D.
5.解析: A 原式=2(a2+2ab+b2)-6=2(a+b)2-6=2×32-6=12.故选A.
6.解析: A 原式=(3m+2n+m-n)(3m+2n)=(4m+n)(3m+2n)=12m2+11mn+2n2.故选A.
7.解析: D 图中大正方形的面积可表示为a2+2ab+b2,也可表示为(a+b)2,故(a+b)2=a2+2ab+b2.故选D.
8. -3t2+2t3
解析: 将-t与多项式的每一项分别相乘,括号内各项的符号都要改变.
9.3x2y2
10. a(a-3b)2
解析: 原式=a(a2-6ab+9b2)=a(a-3b)2.
11. 9
解析: (a+b)2=a2+2ab+b2=(a2+b2)+2ab=5+2×2=9.
12.4x5y3
13. 6
解析: 原式=4a2+4a+1-(a2-4)=4a2+4a+1-a2+4=3a2+4a+5.因为3a2+4a-1=0,所以3a2+4a=1,则原式=1+5=6.
14. 4
解析: 因为x2+x+m=(x-3)(x+n),
所以x2+x+m=x2+(n-3)x-3n,
故n-3=1,解得n=4.
15. a+b=0
解析: (x-a)(x-b)=x2-(a+b)x+ab,当a+b=0时,不含x的一次项.
16.解:(1)原式=9x4y2·-23xyz·34xz2=-92x6y3z3.
(2)原式=18m3-4m2-6m.
(3)原式=3a2-2ab+3ab-2b2-ab+b2=3a2-b2.
(4)原式=4x2+12xy+9y2-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.
17.解:(1)原式=x(3x-6y+1).
(2)原式=-n(-4mn+4m2+n2)=-n(n-2m)2.
18.解:(1)原式=25y2-x2-x2+10xy-25y2=-2x2+10xy.
当x=0.5,y=-1时,原式=-5.5.
(2)因为x-y=1,xy=2,
所以原式=xy(x-y)2=2.
19.解:因为长方形的面积为(4x+3)(3x+5),边长为2x-1的正方形的面积为(2x-1)2,边长为x+2的正方形的面积为(x+2)2,
所以S阴影=(4x+3)(3x+5)-(2x-1)2-(x+2)2
=12x2+20x+9x+15-(4x2-4x+1)-(x2+4x+4)
=12x2+29x+15-4x2+4x-1-x2-4x-4
=7x2+29x+10.
20.解:(1)把x+y=4两边平方,得x2+y2+2xy=16,把xy=2代入,得x2+y2=12.
(2)x4+y4=(x2+y2)2-2x2y2=144-8=136.
21.解:(1)因为i2=-1,
所以i3=i2·i=-1·i=-i.
i4=i2·i2=-1×(-1)=1.
(2)①(2+i)(2-i)=-i2+4=1+4=5.
②(2+i)2=i2+4i+4=-1+4i+4=3+4i.
(3)因为(x+y)+3i=(1-x)-yi,
所以x+y=1-x,3=-y,
解得x=2,y=-3.
(4)原式=(1+i)(1+i)(1-i)(1+i)=(1+i)22=2i2=i.
苏科版七年级下册第9章 从面积到乘法公式综合与测试优秀课后作业题: 这是一份苏科版七年级下册第9章 从面积到乘法公式综合与测试优秀课后作业题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
苏科版七年级下册第9章 从面积到乘法公式综合与测试优秀精练: 这是一份苏科版七年级下册第9章 从面积到乘法公式综合与测试优秀精练,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
苏科版七年级下册第9章 从面积到乘法公式综合与测试优秀课堂检测: 这是一份苏科版七年级下册第9章 从面积到乘法公式综合与测试优秀课堂检测,共4页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。