高考数学一轮复习总教案:16.2 直线与圆的位置关系和圆锥曲线的性质
展开典例精析
题型一 切线的判定和性质的运用
【例1】如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是⊙O的切线;
(2)若eq \f(AC,AB)=eq \f(2,5),求eq \f(AF,DF)的值.
【解析】(1)证明:连接OD,可得∠ODA=∠OAD=∠DAC,
所以OD∥AE,又AE⊥DE,所以DE⊥OD,
又OD为半径,所以DE是⊙O的切线.
(2)过D作DH⊥AB于H,则有∠DOH=∠CAB,
eq \f(OH,OD)=cs∠DOH=cs∠CAB=eq \f(AC,AB)=eq \f(2,5),
设OD=5x,则AB=10x,OH=2x,所以AH=7x.
由△AED≌△AHD可得AE=AH=7x,
又由△AEF∽△DOF可得AF∶DF=AE∶OD=eq \f(7,5),
所以eq \f(AF,DF)=eq \f(7,5).
【变式训练1】已知在直角三角形ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,连接DO并延长交AC的延长线于点E,⊙O的切线DF交AC于点F.
(1)求证:AF=CF;
(2)若ED=4,sin∠E=eq \f(3,5),求CE的长.
【解析】(1)方法一:设线段FD延长线上一点G,则∠GDB=∠ADF,且∠GDB+∠BDO=eq \f(π,2),所以∠ADF+∠BDO=eq \f(π,2),又因为在⊙O中OD=OB,∠BDO=∠OBD,所以∠ADF+∠OBD=eq \f(π,2).
在Rt△ABC中,∠A+∠CBA=eq \f(π,2),所以∠A=∠ADF,所以AF=FD.
又在Rt△ABC中,直角边BC为⊙O的直径,所以AC为⊙O的切线,
又FD为⊙O的切线,所以FD=CF.
所以AF=CF.
方法二:在直角三角形ABC中,直角边BC为⊙O的直径,所以AC为⊙O的切线,
又FD为⊙O的切线,所以FD=CF,且∠FDC=∠FCD.
又由BC为⊙O的直径可知,∠ADF+∠FDC=eq \f(π,2),∠A+∠FCD=eq \f(π,2),
所以∠ADF=∠A,所以FD=AF.
所以AF=CF.
(2)因为在直角三角形FED中,ED=4,sin∠E=eq \f(3,5),所以cs∠E=eq \f(4,5),所以FE=5.
又FD=3=FC,所以CE=2.
题型二 圆中有关定理的综合应用
【例2】如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
【解析】(1)连接AB,因为AC是⊙O1的切线,所以∠BAC=∠D,
又因为∠BAC=∠E,所以∠D=∠E,所以AD∥EC.
(2)方法一:因为PA是⊙O1的切线,PD是⊙O1的割线,
所以PA2=PB·PD,所以62=PB·(PB+9),所以PB=3.
在⊙O2中,由相交弦定理得PA·PC=BP·PE,所以PE=4.
因为AD是⊙O2的切线,DE是⊙O2的割线,
所以AD2=DB·DE=9×16,所以AD=12.
方法二:设BP=x, PE=y.
因为PA=6,PC=2,所以由相交弦定理得PA·PC=BP·PE,即xy=12.①
因为AD∥EC,所以eq \f(DP,PE)=eq \f(AP,PC),所以eq \f(9+x,y)=eq \f(6,2).②
由①②可得或 (舍去),所以DE=9+x+y=16.
因为AD是⊙O2的切线,DE是⊙O2的割线,所以AD2=DB·DE=9×16,所以AD=12.
【变式训练2】如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,,DE交AB于点F,且AB=2BP=4.
(1)求PF的长度;
(2)若圆F与圆O内切,直线PT与圆F切于点T,求线段PT的长度.
【解析】(1)连接OC,OD,OE,由同弧对应的圆周角与圆心角之间的关系,结合题中已知条件可得∠CDE=∠AOC.
又∠CDE=∠P+∠PFD,∠AOC=∠P+∠OCP,
从而∠PFD=∠OCP,故△PFD∽△PCO,所以eq \f(PF,PC)=eq \f(PD,PO).
由割线定理知PC·PD=PA·PB=12,故PF==eq \f(12,4)=3.
(2)若圆F与圆O内切,设圆F的半径为r,
因为OF=2-r=1,即r=1,
所以OB是圆F的直径,且过点P的圆F的切线为PT,
则PT2=PB·PO=2×4=8,即PT=2eq \r(2).
题型三 四点共圆问题
【例3】如图,圆O与圆P相交于A、B两点,圆心P在圆O上,圆O的弦BC切圆P于点B,CP及其延长线交圆P于D,E两点,过点E作EF⊥CE,交CB的延长线于点F.
(1)求证:B、P、E、F四点共圆;
(2)若CD=2,CB=2eq \r(2),求出由B、P、E、F四点所确定的圆的直径.
【解析】(1)证明:连接PB.因为BC切圆P于点B,所以PB⊥BC.
又因为EF⊥CE,所以∠PBF+∠PEF=180°,所以∠EPB+∠EFB=180°,
所以B,P,E,F四点共圆.
(2)因为B,P,E,F四点共圆,且EF⊥CE,PB⊥BC,所以此圆的直径就是PF.
因为BC切圆P于点B,且CD=2,CB=2eq \r(2),
所以由切割线定理CB2=CD·CE,得CE=4,DE=2,BP=1.
又因为Rt△CBP∽Rt△CEF,所以EF∶PB=CE∶CB,得EF=eq \r(2).
在Rt△FEP中,PF=eq \r(PE2+EF2)=eq \r(3),
即由B,P,E,F四点确定的圆的直径为eq \r(3).
【变式训练3】如图,△ABC是直角三角形,∠ABC=90°.以AB为直径的圆O交AC于点E,点D是BC边的中点.连接OD交圆O于点M.求证:
(1)O,B,D,E四点共圆;
(2)2DE2=DM·AC+DM·AB.
【证明】(1)连接BE,则BE⊥EC.
又D是BC的中点,所以DE=BD.
又OE=OB,OD=OD,所以△ODE≌△ODB,
所以∠OBD=∠OED=90°,所以D,E,O,B四点共圆.
(2)延长DO交圆O于点H.
因为DE2=DM·DH=DM·(DO+OH)=DM·DO+DM·OH=DM·(eq \f(1,2)AC)+DM·(eq \f(1,2)AB),
所以2DE2=DM·AC+DM·AB.
总结提高
1.直线与圆的位置关系是一种重要的几何关系.
本章在初中平面几何的基础上加以深化,使平面几何知识趋于完善,同时为解析几何、立体几何提供了多个理论依据.
2.圆中的角如圆周角、圆心角、弦切角及其性质为证明相关的比例线段提供了理论基础,为解决综合问题提供了方便,使学生对几何概念和几何方法有较透彻的理解.
高中数学高考高考数学一轮复习总教案:5 6 函数y=Asin(ωx+ )的图象和性质: 这是一份高中数学高考高考数学一轮复习总教案:5 6 函数y=Asin(ωx+ )的图象和性质,共4页。教案主要包含了变式训练1,变式训练2,变式训练3等内容,欢迎下载使用。
高中数学高考高考数学一轮复习总教案:9 5 圆锥曲线综合问题: 这是一份高中数学高考高考数学一轮复习总教案:9 5 圆锥曲线综合问题,共4页。教案主要包含了变式训练1,变式训练2,变式训练3等内容,欢迎下载使用。
高考数学一轮复习总教案:5.5 三角函数的图象和性质: 这是一份高考数学一轮复习总教案:5.5 三角函数的图象和性质,共3页。教案主要包含了变式训练1,变式训练2,变式训练3等内容,欢迎下载使用。