初中数学人教版九年级下册第二十六章 反比例函数综合与测试优秀习题
展开人教版九年级数学下册 第二十六章 《反比例函数》压轴综合专练
1.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(1,4)、B(4,n).
(1)求这两个函数的表达式;
(2)请结合图象直接写出不等式kx+b<的解集;
(3)若点P为x轴上一点,△ABP的面积为6,求点P的坐标.
2.如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=4.
(1)求反比例函数解析式;
(2)求点C的坐标.
3.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.
(1)求直线l的解析式;
(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?
4.如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.
(1)求m、n的值并写出该反比例函数的解析式.
(2)点E在线段CD上,S△ABE=10,求点E的坐标.
5.如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B,将△AOB绕点B逆时针旋转,使点O的对应点D落在x轴的正半轴上.若AB的对应线段CB恰好经过点O.
(1)求点B的坐标和双曲线的解析式;
(2)判断点C是否在双曲线上,并说明理由.
6.如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.
(1)求直线AB和反比例函数的解析式;
(2)求△OCD的面积.
7.如图,反比例函数y=的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y=在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.
(1)求k的值;
(2)当b=﹣2时,求△OCD的面积;
(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.
8.如图,已知点A、P在反比例函数y=(k<0)的图象上,点B、Q在直线y=x﹣3的图象上,点B的纵坐标为﹣1,AB⊥x轴,且S△OAB=4,若P、Q两点关于y轴对称,设点P的坐标为(m,n).
(1)求点A的坐标和k的值;
(2)求的值.
9.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上一点(不与B、C两点重合),过点F的反比例函数y=(k>0)图象与AC边交于点E.
(1)请用k表示点E,F的坐标;
(2)若△OEF的面积为9,求反比例函数的解析式.
10.如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.
(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.
(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.
(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).
11.如图,一次函数y=﹣(b+2)x+b的图象经过点A(﹣1,0),且与y轴相交于点C,与双曲线y=相交于点P.
(1)求b的值;
(2)作PM⊥PC交y轴于点M,已知S△MPC=4,求双曲线的解析式.
12.如图,直线y=k1x+7(k1<0)与x轴交于点A,与y轴交于点B,与反比例函数y=(k2>0)的图象在第一象限交于C、D两点,点O为坐标原点,△AOB的面积为,点C横坐标为1.
(1)求反比例函数的解析式;
(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”,请求出图中阴影部分(不含边界)所包含的所有整点的坐标.
13.如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.
(1)求直线l的表达式;
(2)若反比例函数y=的图象经过点P,求m的值.
14.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).
(1)求反比例函数的表达式;
(2)求点F的坐标.
15.已知:如图,一次函数y=﹣2x+1与反比例函数y=的图象有两个交点A(﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.
(1)求k的值;
(2)求四边形AEDB的面积.
参考答案
1.解:(1)把A(1,4)代入y=得:m=4,
∴反比例函数的解析式为y=;
把B(4,n)代入y=,得:n=1,
∴B(4,1),
把A(1,4)、(4,1)代入y=kx+b,得:,
解得:,
∴一次函数的解析式为y=﹣x+5;
(2)根据图象得:当0<x<1或x>4时,kx+b<;
∴不等式kx+b<的解集为0<x<1或x>4;
(3)如图,设直线AB与x轴交于点C,
∵直线AB与x轴交于点C,
∴点C坐标为(5,0),
∵△ABP的面积为6,
∴×PC×4﹣PC×1=6,
∴PC=4,
∴点P的坐标为(1,0)或(9,0).
2.解:(1)∵∠ABO=90°,S△BOD=4,
∴×k=4,解得k=8,
∴反比例函数解析式为y=;
(2)∵∠ABO=90°,OB=4,AB=8,
∴A点坐标为(4,8),
设直线OA的解析式为y=kx,
把A(4,8)代入得4k=8,解得k=2,
∴直线OA的解析式为y=2x,
解方程组得或,
∵C在第一象限,
∴C点坐标为(2,4).
3.解:由P(﹣1,n)在y=﹣上,得n=4,
∴P(﹣1,4),
∵F为PE中点,
∴OF=n=2,
∴F(0,2),
又∵P,F在y=kx+b上,
∴,
解得.
∴直线l的解析式为:y=﹣2x+2.
(2)如图,过P作PD⊥AB,垂足为点D,
∵PA=PB,
∴点D为AB的中点,
又由题意知A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D点的纵坐标为4,
∴得方程﹣2a+2﹣=4×2,
解得a1=﹣2,a2=﹣1(舍去).
∴当a=﹣2时,PA=PB.
4.解:(1)由题意得:,
解得:,
∴A(1,6),B(6,1),
设反比例函数解析式为y=,
将A(1,6)代入得:k=6,
则反比例解析式为y=;
(2)设E(x,0),则DE=x﹣1,CE=6﹣x,
∵AD⊥x轴,BC⊥x轴,
∴∠ADE=∠BCE=90°,
连接AE,BE,
则S△ABE=S四边形ABCD﹣S△ADE﹣S△BCE
=(BC+AD)•DC﹣DE•AD﹣CE•BC
=×(1+6)×5﹣(x﹣1)×6﹣(6﹣x)×1
=﹣x
=10,
解得:x=3,
则E(3,0).
5.解:(1)∵AB∥x轴,
∴∠ABO=∠BOD,
∵∠ABO=∠CBD,
∴∠BOD=∠OBD,
∵OB=BD,
∴∠BOD=∠BDO,
∴△BOD是等边三角形,
∴∠BOD=60°,
∴B(1,);
∵双曲线y=经过点B,
∴k=1×=.
∴双曲线的解析式为y=.
(2)∵∠ABO=60°,∠AOB=90°,
∴∠A=30°,
∴AB=2OB,
∵AB=BC,
∴BC=2OB,
∴OC=OB,
∴C(﹣1,﹣),
∵﹣1×(﹣)=,
∴点C在双曲线上.
6.解:(1)∵OB=4,OE=2,
∴BE=2+4=6.
∵CE⊥x轴于点E,tan∠ABO===.
∴OA=2,CE=3.
∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).
设直线AB的解析式为y=kx+b,则,
解得.
故直线AB的解析式为y=﹣x+2.
设反比例函数的解析式为y=(m≠0),
将点C的坐标代入,得3=,
∴m=﹣6.
∴该反比例函数的解析式为y=﹣.
(2)联立反比例函数的解析式和直线AB的解析式可得,
可得交点D的坐标为(6,﹣1),
则△BOD的面积=4×1÷2=2,
△BOC的面积=4×3÷2=6,
故△OCD的面积为2+6=8.
7.解:(1)∵反比例函数y=的图象经过点A(﹣1,4),
∴k=﹣1×4=﹣4;
(2)当b=﹣2时,直线解析式为y=﹣x﹣2,
∵y=0时,﹣x﹣2=0,解得x=﹣2,
∴C(﹣2,0),
∵当x=0时,y=﹣x﹣2=﹣2,
∴D(0,﹣2),
∴S△OCD=×2×2=2;
(3)存在.
当y=0时,﹣x+b=0,解得x=b,则C(b,0),
∵S△ODQ=S△OCD,
∴点Q和点C到OD的距离相等,
而Q点在第四象限,
∴Q的横坐标为﹣b,
当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),
∵点Q在反比例函数y=﹣的图象上,
∴﹣b•2b=﹣4,解得b=﹣或b=(舍去),
∴b的值为﹣.
8.解:(1)∵点B在直线y=x﹣3的图象上,点B的纵坐标为﹣1,
∴当y=﹣1时,x﹣3=﹣1,解得x=2,
∴B(2,﹣1).
设点A的坐标为(2,t),则t<﹣1,AB=﹣1﹣t.
∵S△OAB=4,
∴(﹣1﹣t)×2=4,
解得t=﹣5,
∴点A的坐标为(2,﹣5).
∵点A在反比例函数y=(k<0)的图象上,
∴﹣5=,解得k=﹣10;
(2)∵P、Q两点关于y轴对称,点P的坐标为(m,n),
∴Q(﹣m,n),
∵点P在反比例函数y=﹣的图象上,点Q在直线y=x﹣3的图象上,
∴n=﹣,n=﹣m﹣3,
∴mn=﹣10,m+n=﹣3,
∴====﹣.
9.解:(1)E(,4),F(6,);
(2)∵E,F两点坐标分别为E(,4),F(6,),
∴S△ECF=EC•CF=(6﹣k)(4﹣k),
∴S△EOF=S矩形AOBC﹣S△AOE﹣S△BOF﹣S△ECF
=24﹣k﹣k﹣S△ECF
=24﹣k﹣(6﹣k)(4﹣k),
∵△OEF的面积为9,
∴24﹣k﹣(6﹣k)(4﹣k)=9,
整理得,=6,
解得k=12.
∴反比例函数的解析式为y=.
10.解:(1)∵直线y=ax+b与双曲线y=(x>0)交于A(1,3),
∴k=1×3=3,
∴y=,
∵B(3,y2)在反比例函数的图象上,
∴y2==1,
∴B(3,1),
∵直线y=ax+b经过A、B两点,
∴解得,
∴直线为y=﹣x+4,
令y=0,则x=4,
∴P(4,0);
(2)如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,
则AD∥BG∥x轴,AE∥BF∥y轴,
∴=,==,
∵b=y1+1,AB=BP,
∴=,
==,
∴B(, y1)
∵A,B两点都是反比例函数图象上的点,
∴x1•y1=•y1,
解得x1=2,
代入=,解得y1=2,
∴A(2,2),B(4,1).
(3)根据(1),(2)中的结果,猜想:x1,x2,x0之间的关系为x1+x2=x0.
11.解:(1)∵一次函数y=﹣(b+2)x+b的图象经过点A(﹣1,0),
∴b+2+b=0,
解得:b=﹣1.
(2)过点P作PB⊥MC于点B,如图所示.
将b=﹣1代入一次函数解析式,得:y=﹣x﹣1.
当x=0时,y=﹣1,
∴点C的坐标为(0,﹣1),
∴OC=1,
∵点A的坐标为(﹣1,0),
∴OA=1=OC,
∴∠ACO=45°.
∵PM⊥PC,
∴△PMC为等腰直角三角形,
∵PB⊥MC,
∴PB=MC,
∴S△PMC=CM•PB=PB2,
∵S△PMC=4,
∴PB2=4,即PB=2或PB=﹣2(舍去),
∵点P在第二象限,
∴点P的横坐标为﹣2,
当x=﹣2时,y=﹣(﹣2)﹣1=1,
∴点P的坐标为(﹣2,1).
∵双曲线y=经过点P,
∴k=﹣2×1=﹣2,
∴双曲线的解析式为y=﹣.
12.解:(1)∵当x=0时,y=7,当y=0时,x=﹣,
∴A(﹣,0)、B(0、7).
∴S△AOB=|OA|•|OB|=×(﹣)×7=,解得k1=﹣1.
∴直线的解析式为y=﹣x+7.
∵当x=1时,y=﹣1+7=6,
∴C(1,6).
∴k2=1×6=6.
∴反比例函数的解析式为y=.
(2)∵点C与点D关于y=x对称,
∴D(6,1).
当x=2时,反比例函数图象上的点为(2,3),直线上的点为(2,5),此时可得整点为(2,4);
当x=3时,反比例函数图象上的点为(3,2),直线上的点为(3,4),此时可得整点为(3,3);
当x=4时,反比例函数图象上的点为(4,),直线上的点为(4,3),此时可得整点为(4,2);
当x=5时,反比例函数图象上的点为(5,),直线上的点为(5,2),此时,不存在整点.
综上所述,符合条件的整点有(2,4)、(3,3)、(4,2).
13.解:
(1)∵A(2,0),∴OA=2.
∵tan∠OAB==,
∴OB=1,
∴B(0,1),
设直线l的表达式为y=kx+b,则,解得,
∴直线l的表达式为y=﹣x+1;
(2)∵点P到y轴的距离为1,且点P在y轴左侧,
∴点P的横坐标为﹣1,
又∵点P在直线l上,
∴点P的纵坐标为:﹣×(﹣1)+1=,
∴点P的坐标是(﹣1,),
∵反比例函数y=的图象经过点P,
∴=,
∴m=﹣1×=﹣.
14.解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),
∴k=2×4=8,
∴反比例函数的解析式为y=;
(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,
由题意可知,CN=2AM=4,ON=2OM=8,
∴点C的坐标为C(8,4),
设OB=x,则BC=x,BN=8﹣x,
在Rt△CNB中,x2﹣(8﹣x)2=42,
解得:x=5,
∴点B的坐标为B(5,0),
设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),
∴,
解得:,
∴直线BC的解析式为y=x﹣,
根据题意得方程组,
解此方程组得:或
∵点F在第一象限,
∴点F的坐标为F(6,).
15.解:(1)如图所示,延长AE,BD交于点C,则∠ACB=90°,
∵一次函数y=﹣2x+1的图象经过点A(﹣1,m),
∴m=2+1=3,
∴A(﹣1,3),
∵反比例函数y=的图象经过A(﹣1,3),
∴k=﹣1×3=﹣3;
(2)∵BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),
∴令y=﹣2,则﹣2=﹣2x+1,
∴x=,即B(,﹣2),
∴C(﹣1,﹣2),
∴AC=3﹣(﹣2)=5,BC=﹣(﹣1)=,
∴四边形AEDB的面积=△ABC的面积﹣△CDE的面积
=AC×BC﹣CE×CD
=×5×﹣×2×1
=.
专题26.10反比例函数与几何压轴大题专练-九年级数学下册尖子生培优必刷题: 这是一份专题26.10反比例函数与几何压轴大题专练-九年级数学下册尖子生培优必刷题,文件包含专题2610反比例函数与几何压轴大题专练-九年级数学下册尖子生培优必刷题原卷版人教版docx、专题2610反比例函数与几何压轴大题专练-九年级数学下册尖子生培优必刷题解析版人教版docx等2份试卷配套教学资源,其中试卷共106页, 欢迎下载使用。
数学九年级下册第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数一课一练: 这是一份数学九年级下册第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数一课一练,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
第二十六章 反比例函数【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版): 这是一份第二十六章 反比例函数【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版),文件包含第二十六章反比例函数题型专练解析版docx、第二十六章反比例函数题型专练原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。