中考数学几何模型加强版 模型12 与正方形有关的三垂线
展开一、单选题
1.如图,点,点在射线上匀速运动,运动的过程中以为对称中心,为一个顶点作正方形,当正方形的面积为40时,点的坐标是( )
A.B.C.D.
二、解答题
2.探究证明:
(1)如图1,正方形ABCD中,点M、N分别在边BC、CD上,AM⊥BN.求证:BN=AM;
(2)如图2,矩形ABCD中,点M在BC上,EF⊥AM,EF分别交AB、CD于点E、F.求证:;
(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M、N分别在边BC、AB上,求的值.
3.如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的关系(直接写出答案,不用证明);
(2)将正方形DEFG绕点D逆时针方向旋转α (0°<α≤60°),判断(1)中的结论是否仍然成立?请利用图②证明你的结论;
(3)若BC=DE=4,当α等于多少度时,AE最大?并求出此时AF的值.
4.如图,四边形ABCD是正方形,G是BC上任意一点,DE⊥AG于点E,BF∥DE,且交AG于点F.
(1)求证:;
(2)求证:DE-BF=EF;
(3)若AB=2,BG=1,求线段EF的长.
5.如图所示,四边形ABCD是正方形,G是BC上任意一点(点G与不重合),于E,交DG于F.
求证:.
6.四边形是边长为的正方形,点在边所在的直线上,连接,以为直角顶点在右侧作等腰,连接
(1)如图1,当点在点左侧,且三点共线时,______;
(2)如图2,当点在点右侧,且时,求的长:
(3)若点在边所在直线上,且,求的长.
7.在正方形中,点是边上的一点,点是直线上一动点,于,交直线于点.
(1)当点运动到与点重合时(如图1),线段与的数量关系是________.
(2)若点运动到如图2所示的位置时,(1)探究的结论还成立吗?如果成立,请给出证明:如果不成立,请说明理由.
(3)如图3,将边长为的正方形折叠,使得点落在边的中点处,折痕为,点、分别在边、上,请直接写出折痕的长.
8.如图1,点C在线段AB上,分别以AC、BC为边在线段AB的同侧作正方形ACDE和正方形BCMN, 连结AM、BD.
(1)AM与BD的关系是:________.
(2)如果将正方形BCMN绕点C顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.
(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.
9.如图,在正方形中,对角线、相交于点,、分别在、上,且,连接、,的延长线交于点.
(1)求证:;
(2)求证:.
10.如图1,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上(不与点A,O重合)的一个动点,过点P作PE⊥PB且PE交边CD于点E.
(1)求证:PE=PB;
(2)如图2,若正方形ABCD的边长为2,过点E作EF⊥AC于点F,在点P运动的过程中,PF的长度是否发生变化?若不变,试求出这个不变的值;若变化,请说明理由;
(3)用等式表示线段PC,PA,CE之间的数量关系.
11.平面直角坐标系中,四边形OABC是正方形,点A,C 在坐标轴上,点B(,),P是射线OB上一点,将绕点A顺时针旋转90°,得,Q是点P旋转后的对应点.
(1)如图(1)当OP = 时,求点Q的坐标;
(2)如图(2),设点P(,)(),的面积为S. 求S与的函数关系式,并写出当S取最小值时,点P的坐标;
(3)当BP+BQ = 时,求点Q的坐标(直接写出结果即可)
12.在平面直角坐标系中,抛物线经过点和点.
(1)求抛物线的解析式;
(2)为抛物线上的一个动点,点关于原点的对称点为.当点落在该抛物线上时,求的值;
(3)是抛物线上一动点,连接,以为边作图示一侧的正方形,随着点的运动,正方形的大小与位置也随之改变,当顶点或恰好落在轴上时,求对应的点坐标.
13.如图,点E,F,G,H分别位于边长为a的正方形ABCD的四条边上,四边形EFGH也是正方形,AG=x,正方形EFGH的面积为y.
(1)当a=2,y=3时,求x的值;
(2)当x为何值时,y的值最小?最小值是多少?
14.如图所示,,,以为边作正方形,求点、的坐标.
15.如图所示,,四边形为正方形,交轴于.求点的坐标.
三、填空题
16.如图,正方形的边长为4,点在边上,,若点在正方形的某一边上,满足,且与的交点为.则_________.
17.如图,四边形中,.则______.
18.如图,平面直角坐标系中有一正方形,点的坐标为点坐标为________.
19.如图在直线上一次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+2S2+2S3+S4=__.
20.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为2,3,H为线段DF的中点,则BH=_____.
21.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.一定成立的是_____.
22.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.
中考数学几何模型加强版 模型20 母子形相似模型: 这是一份中考数学几何模型加强版 模型20 母子形相似模型,文件包含模型20母子形相似模型原卷版docx、模型20母子形相似模型解析版docx等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。
中考数学几何模型加强版 模型03 和角平分线有关的辅助线: 这是一份中考数学几何模型加强版 模型03 和角平分线有关的辅助线,文件包含专题03和角平分线有关的辅助线原卷版docx、专题03和角平分线有关的辅助线解析版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。
中考数学几何模型加强版 模型29 平行线中和角平分线有关的图形: 这是一份中考数学几何模型加强版 模型29 平行线中和角平分线有关的图形,文件包含模型29平行线中和角平分线有关的图形原卷版docx、模型29平行线中和角平分线有关的图形解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。