人教版七年级下册7.1.2平面直角坐标系评优课课件ppt
展开文字密码游戏:如图“家”字的位置记作(1,9),请你破解密码:(3,3),(5,5),(2,7),(2,2),(1,8)(8,7),(8,8).
密码是:“嘿,我真聪明!”
思考1 如图,数轴上的点A、B表示的数是什么?表示数字4的点是哪个点?
思考2 由思考1你发现数轴上的点与实数是什么关系?
一一对应①数轴上的每个点都对应一个实数(这个实数叫作这个 点在数轴上的坐标);②反过来,知道一个数,这个数在数轴上的位置就确定了.
A: -3; B:2.
思考:小丽能根据小明的提示从左图中找出图书馆的位置吗?
周末小明和小丽约好一起去图书馆学习.小明告诉小丽,图书馆在中山北路西边50米,人民西路北边30米的位置.
4.如果小明只说在“中山北路西边50米”,或只说在“人民西路北边30米”,你能找到吗?
1.小明是怎样描述图书馆的位置的?
2.小明可以省去“西边”和“北边”这几个字吗?
3.如果小明说图书馆在“中山北路西边、人民西路北边”,你能找到吗?
若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,这样就形成了一个平面直角坐标系.
在平面内画两条互相垂直的数轴,构成平面直角坐标系.
竖直的叫y轴或纵轴;y轴取向上为正方向
水平的叫x轴或横轴;x轴取向右为正方向
x轴与y轴的交点叫平面直角坐标系的原点.
练一练:下面四个图形中,是平面直角坐标系的是( )
3 2 1 -1 -2 -3
这样P点的横坐标是-2,纵坐标是3,规定把横坐标写在前,纵坐标在后,记作:P(-2,3)P(-2,3)就叫做点P在平面直角坐标系中的坐标,简称点P的坐标.
思考:如图点P如何表示呢?
后由P点向y轴画垂线,垂足N在y轴上的坐标是3. 称为P点的纵坐标.
先由P点向x轴画垂线,垂足M在x轴上的坐标是-2;称为P点的横坐标.
1. 找出点A的坐标.
(1)过点A作x轴的垂线,垂足在x轴上对应的数是4;(2)过点A作y轴的垂线,垂足在y轴上对应的数是3; 点A的坐标为(4,3)
2. 在平面直角坐标系中找点A(3,-2)
由坐标找点的方法: (1)先在坐标轴上找到表示横坐标与纵坐标的点; (2)然后过这两点分别作x轴与y轴的垂线; (3)垂线的交点就是该坐标对应的点.
例1:写出下图中的多边形ABCDEF各个顶点的坐标.
【答案】A(-2,0) B(0,-3) C(3,-3) D(4,0) E(3,3) F(0,3)
在直角坐标系中描下列各点:A(4,3),B(-2,3),C(-4,-1),D(2,-2).
在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成如图所示的Ⅰ,Ⅱ ,Ⅲ,Ⅳ四个区域.
分别称为第一,二,三,四象限.
注意:坐标轴上的点不属于任何一个象限.
活动1: 观察坐标系,填写各象限内的点的坐标的特征:
交流:不看平面直角坐标系,你能迅速说出A(4,5) , B(-2,3), C(-4,-1), D(2.5,-2), E(0,-4)所在的象限吗?你的方法又是什么?
交流:不看平面直角坐标系,你能迅速说出A(4,0),B(0,3),C(-4,0),E(0,-4),O(0,0)所在的位置吗?你的方法又是什么?
活动2.观察坐标系,填写坐标轴上的点的坐标的特征:
问题.坐标平面内的点与有序数对(坐标)是什么关系?
类似数轴上的点与实数是一一对应的.我们可以得出:①对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应;②反过来,对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.也就是说,坐标平面内的点与有序实数对是一一对应的.
例2:在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).
例3 设点M(a,b)为平面直角坐标系内的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?
解:(1)点M在第四象限;(2)在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上(a=0,b<0).
已在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.
解析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组 解得m>2.
【方法总结】求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.
例4 点A(m+3,m+1)在x轴上,则A点的坐标为( )A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)
【解析】点A(m+3,m+1)在x轴上,根据x轴上点的坐标特征知m+1=0,求出m的值代入m+3中即可.
【方法总结】坐标轴上的点的坐标特点:x轴上的点的纵坐标为0,y轴上的点的横坐标为0.根据点所在坐标轴确定字母取值,进而求出点的坐标.
已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是( )A.(2,-1) B.(1,-2) C.(-2,-1) D.(1,2)
解析:由点P到x轴的距离为2,可知点P的纵坐标的绝对值为2,又因为垂足在y轴的负半轴上,则纵坐标为-2;由点P到y轴的距离为1,可知点P的横坐标的绝对值为1,又因为垂足在x轴的正半轴上,则横坐标为1.故点P的坐标是(1,-2).
本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道“点P到x轴的距离”对应的是纵坐标,“点P到y轴的距离”对应的是横坐标;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P的坐标有四个.
建立坐标系求图形中点的坐标
问题:正方形ABCD的边长为4,请建立一个平面直角坐标系,并写出正方形的四个顶点A,B,C,D在这个平面直角坐标系中的坐标.
解:如图,以顶点A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系.此时,正方形四个顶点A,B,C,D的坐标分别为:A(0,0), B(4,0),C(4,4), D(0,4).
A(0,-4), B(4,-4),C(4,0), D(0,0).
想一想:还可以建立其他平面直角坐标系,表示正方形的四个顶点A,B,C,D的坐标吗?
A(-4,0), B(0,0),C(0,4), D(-4,4).
A(-4,-4), B(0,-4),C(0,0), D(-4,0).
A(-2,-2), B(2,-2),C(2,2), D(-2,2).
追问 由上得知,建立的平面直角坐标系不同,则各点的坐标也不同.你认为怎样建立直角坐标系才比较适当?
【总结】建立平面直角坐标系,一般要使图形上的点的坐标容易确定,例如以正方形的两条边所在的直线为坐标轴,建立平面直角坐标系,又如以正方形的中心为原点建立平面直角坐标系.需要说明的是,虽然建立不同的平面直角坐标系,同一个点会有不同的坐标,但正方形的形状和性质不会改变.
例5:长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.
解:如图, 建立直角坐标系,∵长方形的一个顶点的坐标为A(-2,-3),∴长方形的另外三个顶点的坐标分别为B(2,-3),C(2,3),D(-2,3).
方法总结:由已知条件正确确定坐标轴的位置是解决本题的关键.
右图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋❷的坐标是________.
解析:由已知白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),可知y轴应在从左往右数的第四条格线上,且向上为正方向,x轴在从上往下数第二条格线上,且向右为正方向,这两条直线的交点为坐标原点,由此可得黑棋②的坐标是(1,-2).
1.如图,点A的坐标为( )A. ( -2,3)B. ( 2,-3)C . ( -2,-3)D . ( 2,3)
2.如图,点A的坐标为 ,点B的坐标为 .
3.在 y轴上的点的横坐标是______,在 x轴上的点的纵坐标是 ______.4.点 M(- 8,12)到 x轴的距离是_______,到 y轴的距离是 _________ .
A(3,6)B(0,-8)C(-7,-5)D(-6,0)E(-3.6,5)F(5,-6)G(0,0)
5.下列各点分别在坐标平面的什么位置上?
2.已知P点坐标为(a+1,a-3) ①点P在x轴上,则a= ; ②点P在y轴上,则a= ;
3.若点P(x,y)在第四象限,|x|=5,|y|=4,则P点的坐标为 .
1.已知a
初中数学人教版七年级下册7.1.2平面直角坐标系作业ppt课件: 这是一份初中数学人教版七年级下册<a href="/sx/tb_c102671_t3/?tag_id=26" target="_blank">7.1.2平面直角坐标系作业ppt课件</a>,共20页。PPT课件主要包含了-43等内容,欢迎下载使用。
人教版七年级下册7.1.2平面直角坐标系课文ppt课件: 这是一份人教版七年级下册7.1.2平面直角坐标系课文ppt课件,共26页。PPT课件主要包含了温故知新,点在直线上的位置,小故事,回答问题,即兴创作,第一象限,第四象限,第三象限,第二象限,学以致用等内容,欢迎下载使用。
初中数学人教版七年级下册7.1.2平面直角坐标系教课内容ppt课件: 这是一份初中数学人教版七年级下册7.1.2平面直角坐标系教课内容ppt课件,共25页。