|课件下载
搜索
    上传资料 赚现金
    八年级下数学课件:17-1 勾股定理 (共24张PPT)1_人教新课标
    立即下载
    加入资料篮
    八年级下数学课件:17-1 勾股定理  (共24张PPT)1_人教新课标01
    八年级下数学课件:17-1 勾股定理  (共24张PPT)1_人教新课标02
    八年级下数学课件:17-1 勾股定理  (共24张PPT)1_人教新课标03
    八年级下数学课件:17-1 勾股定理  (共24张PPT)1_人教新课标04
    八年级下数学课件:17-1 勾股定理  (共24张PPT)1_人教新课标05
    八年级下数学课件:17-1 勾股定理  (共24张PPT)1_人教新课标06
    八年级下数学课件:17-1 勾股定理  (共24张PPT)1_人教新课标07
    八年级下数学课件:17-1 勾股定理  (共24张PPT)1_人教新课标08
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册17.1 勾股定理获奖ppt课件

    展开
    这是一份数学八年级下册17.1 勾股定理获奖ppt课件,共24页。PPT课件主要包含了创设情境,SA+SBSC,实验探究,结论仍然成立,我们猜想,拼图证明,赵爽拼图证明法,拼过程展示,“赵爽弦图”,∵x0等内容,欢迎下载使用。

    学习目标 1、知识与技能 掌握勾股定理反映的数量关系;会用拼图法、面积法证明勾股定理;在生活实践中学会使用勾股定理。 2、过程与方法 通过 “观察—猜想—归纳—验证” 过程理解勾股定理;学会从特殊到一般的数学思考方法。 3、情感态度、价值观 通过实验、猜想、拼图、证明等了解数学知识的发生发展过程,学会合作交流,体验探究乐趣,增强探索意识;感受勾股定理的悠久历史,激发学习热情。
    除地球外,别的星球上有没有生命呢? 自古以来,人类就不断发出这样的疑问,特别是近年来不断出现的UFO事件,更让人们相信有外星人的说法,如果真的有,那我们怎么和他们交流呢? 我国著名数学家华罗庚在多年前曾提出这样的设想:向太空发射一种图形,因为这种图形在几千年前就已经被人类所认识,如果他们是“文明人”,也必定认识这种图形.
    那么这到底是一种什么样的图形呢?它真的有那么大的魅力吗?
    下面就让我们通过时光隧道,和古希腊的数学家毕达哥拉斯一起来研究这种图形吧。
    毕达哥拉斯(公元前572----前492年),古希腊著名的哲学家、数学家、天文学家。相传有一次他在朋友家做客时,发现朋友家用砖铺成的地面中反映了A、B、C三者面积之间的数量关系,进而发现直角三角形三边的某种数量关系.
    我们也来观察右图的地面,你能发现A、B、C面积之间有什么数量关系吗?
    每块砖都是等腰直角三角形哦
    (图中每个小方格是1个单位面积)
    1.A中含有____个小方格,即A的面积是 个单位面积.
    B的面积是 个单位面积.
    C的面积是 个单位面积.
    探究一:你能发现图1中正方形A、B、C的面积之间有什么数量关系吗?
    结论:图1中三个正方形A,B,C的面积之间的数量关系是:
    探究二:SA+SB=SC在图2中还成立吗?
    A的面积是 个单位面积.
    B的面积是 个单位面积.
    你是怎样得到正方形C的面积的?与同伴交流交流.
    问题2:式子SA+SB=SC能用直角三角形的三边a、b、c来表示吗?
    问题4:那么直角三角形三边a、b、c之间的关系式是:
    至此,我们在网格中验证了:直角三角形两条直角边上的正方形面积之和等于斜边上的正方形面积,即SA+SB=SC
    a2 + b2 = c2
    问题1:去掉网格结论会改变吗?
    问题3:去掉正方形结论会改变吗?
    命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
    是不是所有的直角三角形都具有这样的结论呢?光靠实验和猜想还不能把问题彻底搞清楚。 这就需要我们对一般的直角三角形进行证明.下面我们就一起来探究,看一看我国古代数学家赵爽是怎样证明这个命题的.
    以直角三角形的两条直角边a、b为边作两个正方形,把两个正方形如图1连在一起,通过剪、拼把它拼成图2的样子。你能做到吗?试试看。
    小组活动:仿照课本中赵爽的思路,只剪两刀,将两个连体正方形,拼成一个新的正方形.
    “赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲。因此,当 2002年第24届国际数学家大会在北京召开时, “赵爽弦图”被选作大会会徽。
    现在,我们已经证明了命题1的正确性,在数学上,经过证明被确认为正确的命题叫做定理,所以命题1在我国叫做勾股定理。
    勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么 a2 + b2 = c2
    即:直角三角形两直角边的平方和等于斜边的平方。
    例题:求出下列直角三角形中未知边的长度.
    解:(1)在Rt△ABC中,由勾股定理得:AB2=AC2+BC2
    (2)在Rt△ABC中,由勾股定理得:AC2+BC2=AB2
    方法总结:利用勾股定理建立方程.
    练习1:图中已知数据表示面积,求表示边的未知数x、y的值.
    如图,大风将一根木制旗杆吹裂,随时都可能倒下,十分危急。接警后“119”迅速赶到现场,并决定从断裂处将旗杆折断。现在需要划出一个安全警戒区域,那么你能确定这个安全区域的半径至少是多少米吗?
    练习2:已知S1=1,S2=3, S3=2,S4=4 , 求S5 、S6 、S7的值.
    1、求下列图中字母所表示的正方形的面积.
    2、如图,受台风影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高?
    3、求下列直角三角形中未知边的长.
    1、本节课我们学到了什么?
      通过学习,我们知道了著名的勾股定理,掌握了从特殊到一般的探索方法,还学会到了拼图证明的方法。
    2、学了本节课后我们有什么感想?
       我们发现有些数学结论就存在于平常的生活中,需要我们用数学的眼光去观察、思考、发现。
    相关课件

    数学八年级下册17.1 勾股定理完美版ppt课件: 这是一份数学八年级下册17.1 勾股定理完美版ppt课件,共23页。PPT课件主要包含了自学指导,大胆猜想,验证猜想,a2+b2c2,证明猜想,勾股定理,数学奥妙,证法拾趣1,c2a2+b2,证法拾趣2等内容,欢迎下载使用。

    初中人教版17.1 勾股定理说课课件ppt: 这是一份初中人教版17.1 勾股定理说课课件ppt,共20页。PPT课件主要包含了勾股定理,证法一,赵爽弦图的证法,化简得,c2a2+b2,证法二等内容,欢迎下载使用。

    初中数学人教版八年级下册17.1 勾股定理背景图课件ppt: 这是一份初中数学人教版八年级下册17.1 勾股定理背景图课件ppt,共16页。PPT课件主要包含了结论变形,∠C900,谈谈你的收获等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map