初中数学人教版九年级上册第二十五章 概率初步25.3 用频率估计概率优秀导学案
展开【学习目标】
1.学会根据问题的特点,用统计频率来估计事件发生的概率.
2.理解用频率估计概率的方法,渗透转化和估算的数学方法.
【学习重点】
对利用频率估计概率的理解和应用.
【学习难点】
比较用列举法求概率与用频率求概率的条件与方法.
情景导入 生成问题
知识回顾:
1.举例说明什么是确定事件,什么是不确定事件.
2.什么是概率?
3.抛掷一枚硬币,落定后,正面朝上的概率是多少?你是怎样求出来的?
解:1.确定事件:太阳从东方升起.不确定事件:打开电视正在直播足球比赛.
2.在一定条件下,重复做n次试验,m为n次试验中事件A发生的次数,如果随着n逐渐增大,频率eq \f(m,n)逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p.
3.概率是0.5.
思考:
当试验的所有结果不是有限个,或各种可能结果发生的可能性不相等时,该如何求事件发生的概率呢?
解:在相同的条件下,通过大量的重复试验,可以用这个事件发生的稳定的频率值作为这个事件发生的概率的估计值.
自学互研 生成能力
eq \a\vs4\al(知识模块一 频率与概率的关系)
【自主探究】阅读教材,完成下面的内容:
试验:把全班同学分成8组,每名同学掷一枚硬币10次,每组统计正面向上的总次数,并记录在表格中:
问题:
(1)由上表发现,在重复抛掷一枚硬币时,“正面朝上”的频率在0.5左右摆动.
(2)随着抛掷次数的增加,一般地,频率呈现出一定的稳定性,在0.5左右摆动的幅度会越来越小.这时,我们称“正面向上”的频率稳定于0.5.
归纳:一般地,在大量重复试验中,如果事件A发生的频率eq \f(m,n)稳定于某个常数p,那么事件A发生的概率P(A)=p.(注意:频率估计概率的条件是大量重复试验)
范例:小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下表:
(1)计算“3点朝上”的频率和“5点朝上”的频率;
(2)小颖说:“根据试验,一次试验中出现‘5点朝上’的概率大”;小红说“如果掷600次,那么出现‘6点朝上’的次数正好是100次.”小颖和小红的说法正确吗?为什么?
解:(1)“3点朝上”的频率为eq \f(6,60)=eq \f(1,10),“5点朝上”的频率为eq \f(20,60)=eq \f(1,3);
(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,因为当试验的次数很多时,随机事件发生的频率会稳定在事件发生的概率附近;小红的说法也是错误的,因为事件发生具有随机性,故如果掷600次,“6点朝上”的次数不一定是100次.
eq \a\vs4\al(知识模块二 用稳定的频率值估计事件的概率)
【合作探究】
范例:一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
(1)请估计:当n很大时,摸到白球的频率将会接近0.6;
(2)假如你去摸一次,你摸到白球的概率是0.6,摸到黑球的概率是0.4.
(3)试估算口袋中黑、白两种颜色的球各有多少只?
解:白球:20×0.6=12(只),黑球:20×0.4=8(只).
交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
【当堂检测】
1.下列说法合理的是( D )
A.小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%
B.抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6
C.某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖
D.在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51
2.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是2100个.
课后反思 查漏补缺
1.收获:__________________________________________________
2.存在困惑:_____________________________________
课堂小练
一、选择题
LISTNUM OutlineDefault \l 3 一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20 B.24 C.28 D.30
LISTNUM OutlineDefault \l 3 在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是( )
A.甲组 B.乙组 C.丙组 D.丁组
LISTNUM OutlineDefault \l 3 某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是( )
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
LISTNUM OutlineDefault \l 3 某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:
根据上表可知该队员一次投篮命中的概率大约是( )
A.0.9 B.0.8 C.0.7
LISTNUM OutlineDefault \l 3 一个不透明的盒子里有n个除颜色不同外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出1个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20 B.24 C.28 D.30
LISTNUM OutlineDefault \l 3 一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出1球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球有( )
A.60个 B.50个 C.40个 D.30个
LISTNUM OutlineDefault \l 3 为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放回鱼塘,再从鱼塘中打捞出200条鱼.若在这200条鱼中有5条鱼是有记号的,则估计鱼塘中的鱼有( )
A.3000条 B.2200条 C.1200条 D.600条
LISTNUM OutlineDefault \l 3 某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.一副去掉大、小王的普通扑克牌洗匀后,从中任抽1张牌的花色是红桃
C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取1球是黄球
D.掷一个质地均匀的正六面体骰子,向上一面的点数是4
二、填空题
LISTNUM OutlineDefault \l 3 在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是 .
LISTNUM OutlineDefault \l 3 下表记录了某种幼树在一定条件下移植成活情况
由此估计这种幼树在此条件下移植成活的概率约是 (精确到0.1).
LISTNUM OutlineDefault \l 3 某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:
则这个厂生产的瓷砖是合格品的概率估计值是 .(精确到0.01)
LISTNUM OutlineDefault \l 3 某射手在相同条件下进行射击训练,结果如下:
该射手击中靶心的概率的估计值是 (精确到0.01).
LISTNUM OutlineDefault \l 3 袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有 个.
LISTNUM OutlineDefault \l 3 某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是 kg.
三、解答题
LISTNUM OutlineDefault \l 3 某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了 名学生;
(2)补全条形统计图;
(3)若该校共有1500名,估计爱好运动的学生有 人;
(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 .
参考答案
LISTNUM OutlineDefault \l 3 答案为:D.
LISTNUM OutlineDefault \l 3 答案为:D.
LISTNUM OutlineDefault \l 3 答案为:D.
LISTNUM OutlineDefault \l 3 答案为:D.
LISTNUM OutlineDefault \l 3 答案为:D.
LISTNUM OutlineDefault \l 3 答案为:C.
LISTNUM OutlineDefault \l 3 答案为:C
LISTNUM OutlineDefault \l 3 答案为:D.
LISTNUM OutlineDefault \l 3 答案为:100.
LISTNUM OutlineDefault \l 3 答案为:0.9.
LISTNUM OutlineDefault \l 3 答案为:0.95.
LISTNUM OutlineDefault \l 3 答案为:0.90.
LISTNUM OutlineDefault \l 3 答案为:3.
LISTNUM OutlineDefault \l 3 答案为:560.
LISTNUM OutlineDefault \l 3 解:(1)爱好运动的人数为40,所占百分比为40%
∴共调查人数为:40÷40%=100
(2)爱好上网的人数所占百分比为10%
∴爱好上网人数为:100×10%=10,
∴爱好阅读人数为:100﹣40﹣20﹣10=30,
补全条形统计图,如图所示,
(3)爱好运动所占的百分比为40%,
∴估计爱好运用的学生人数为:1500×40%=600
(4)爱好阅读的学生人数所占的百分比30%,
∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为
故答案为:(1)100;(3)600;(4)
抛掷次数n
“正面向上”次数m
“正面向上”频率eq \f(m,n)
80
160
240
320
380
440
500
560
朝上的点数
1
2
3
4
5
6
出现的次数
7
9
6
8
20
10
摸球的次数n
100
150
200
500
800
1 000
摸到白球的次数m
58
96
116
295
484
601
摸到白球的频率eq \f(m,n)
0.58
0.64
0.58
0.59
0.605
0.601
初中数学人教版九年级上册25.3 用频率估计概率学案设计: 这是一份初中数学人教版九年级上册25.3 用频率估计概率学案设计,共3页。学案主要包含了课时安排,新知探究,精练反馈,学习小结,拓展延伸等内容,欢迎下载使用。
初中数学人教版九年级上册第二十五章 概率初步25.3 用频率估计概率学案: 这是一份初中数学人教版九年级上册第二十五章 概率初步25.3 用频率估计概率学案,共6页。学案主要包含了旧知回顾,新知梳理,试一试,拓展延伸等内容,欢迎下载使用。
数学九年级上册25.3 用频率估计概率学案: 这是一份数学九年级上册25.3 用频率估计概率学案,共4页。学案主要包含了学习目标,学习重点,学习难点,学习过程等内容,欢迎下载使用。