沪科版七年级下册6.2 实数第1课时导学案及答案
展开6.2 实数
第1课时 实数的概念及分类
学习目标:1.正确表述无理数和实数的概念并会判断。
准确对实数按照一定的标准进行分类,并体会“集合”的含义。
学习重点:正确理解实数的概念。
学习难点:理解实数的概念。
学习过程:
一、复习旧知:
1. 和 统称为有理数。
2.有理数的分类:①按定义分: ②按正负性分
SKIPIF 1 < 0 : SKIPIF 1 < 0
3.把下列各数分别填入相应的集合里
-16,0.04, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,+32,0,-3.1415926,-4.55…,+0.9,3π
正整数集合 负整数集合 整数集合
正分数集合 负分数集合 有理数集合
二、探究新知:
(一)基础过关:
我们知道有理数包括整数和分数,使用计算器计算,把下列分数写成小数的形式,你有什么发现?
SKIPIF 1 < 0
归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式,反过来,任何有限小数或无限循环小数也都是有理数。
观察:通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数。
无理数的概念: 。 例如π=3.1415926…是无理数。
举几个无理数的例子。
像有理数一样,无理数也有正负之分。例如, SKIPIF 1 < 0 ,π是正无理数, SKIPIF 1 < 0 ,-π是负无理数。
练习:判断下列哪些是无理数,那些是有理数?
SKIPIF 1 < 0
无理数有
有理数有
小结: 无理数有三种形式:开方开不尽的数、无限不循环小数,含有π的数
判断:1.无限小数都是无理数( ) 2.无理数都是无限小数( )
3.有理数都是有限小数( ) 4.不带根号的数都是有理数( )
实数的概念: 和 统称为实数。
(二)探究延伸:
实数的分类:
(1)判断:1. 0是正实数( ) 2. 2π是整数( ) 3. SKIPIF 1 < 0 是分数( )
4. SKIPIF 1 < 0 是无理数( ) 5.实数包括有限小数和无限小数.( )
(三)、随堂训练:
1.下列各数 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,0.23,π+1中,是无理数的有 个。
2. 下列说法正确的有( )
①无理数就是开方开不尽的数;②无限不循环小数是无理数;③无理数包括正无理数、零、负无理数;④无理数是用根号形式表示的数;⑥能写成有限小数或无限循环小数的都是有理数
A 1 个 B 2 个 C 3个 D 4个
3.下列说法正确的有( )
A 整数和分数、零统称为有理数 B 正数、0、负数统称为实数
C 整数、有限小数和无限小数统称为实数 D 无限小数就是无理数
4.已知a是无理数,且1<a< 5,试写出两个满足条件的a
5.下列实数 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,0, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,1.1010010001…(每两个1之间的0的个数逐次加1)中,设有m个有理数,n个无理数,则 SKIPIF 1 < 0 =
6.把下列各数分别填入相应的集合里
-|-3|,21.3,-1.234,- EQ \F(22,7) ,0,,- EQ \R(,9) ,- EQ \R(3,\f(-1,8)) , - EQ \F(Л,2) , EQ \R(,8) , SKIPIF 1 < 0 - EQ \R(,3) ,0,3, SKIPIF 1 < 0 ,
-2,,1.2121121112......中
无理数集合{ } 负分数集合{ }
整数集合 { } 非负数集合{ }
正有理数{ } 负有理数{ }
正无理数{ } 负无理数{ }
实数集合{ }
跟踪检测:
1.在实数范围内,下列各式一定不成立的是( )
A SKIPIF 1 < 0 B SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
2.下列各式中,无论取何实数,都没有意义的是( )
A.B. C. D.
课堂小结
无理数的概念:
实数的概念:
实数的分类:
常见的无理数的三种形式:
有理数与无理数的区别是什么?
数学八年级上册11.2 实数优秀第1课时学案: 这是一份数学八年级上册11.2 实数优秀第1课时学案,共5页。学案主要包含了知识链接,新知预习等内容,欢迎下载使用。
初中数学华师大版八年级上册11.2 实数优质第1课时导学案: 这是一份初中数学华师大版八年级上册11.2 实数优质第1课时导学案,共5页。学案主要包含了知识链接,新知预习等内容,欢迎下载使用。
初中数学华师大版八年级上册11.2 实数第1课时学案: 这是一份初中数学华师大版八年级上册11.2 实数第1课时学案,共5页。学案主要包含了知识链接,新知预习等内容,欢迎下载使用。