![2020版高考数学(文)新设计一轮复习通用版讲义:第九章第三节圆的方程01](http://img-preview.51jiaoxi.com/3/3/5756819/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考数学(文)新设计一轮复习通用版讲义:第九章第三节圆的方程02](http://img-preview.51jiaoxi.com/3/3/5756819/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考数学(文)新设计一轮复习通用版讲义:第九章第三节圆的方程03](http://img-preview.51jiaoxi.com/3/3/5756819/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩9页未读,
继续阅读
2020版高考数学(文)新设计一轮复习通用版讲义:第九章第三节圆的方程
展开
第三节圆的方程
一、基础知识批注——理解深一点
1.圆的定义及方程
定义
平面内与定点的距离等于定长的点的集合(轨迹)
标准方程
(x-a)2+(y-b)2=r2(r>0)
❶
圆心:(a,b),半径: r
一般方程
x2+y2+Dx+Ey+F=0,
(D2+E2-4F>0)
❷
圆心:,
半径:
❶标准方程强调圆心坐标为(a,b),半径为r.
❷(1)当D2+E2-4F=0时,方程表示一个点;
(2)当D2+E2-4F<0时,方程不表示任何图形.
2.点与圆的位置关系
点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:
(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2r2.
(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2r2.
(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2r2.
二、常用结论汇总——规律多一点
(1)二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是
(2)以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.
三、基础小题强化——功底牢一点
(1)确定圆的几何要素是圆心与半径.( )
(2)方程(x-a)2+(y-b)2=t2(t∈R)表示圆心为(a,b),半径为t的一个圆.( )
(3)方程x2+y2+4mx-2y=0不一定表示圆.( )
(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x+y+Dx0+Ey0+F>0.( )
答案:(1)√ (2)× (3)× (4)√
(二)选一选
1.圆x2+y2-4x+6y=0的圆心坐标是( )
A.(2,3) B.(-2,3)
C.(-2,-3) D.(2,-3)
解析:选D 因为圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3).
2.圆心为(1,1)且过原点的圆的方程是( )
A.(x-1)2+(y-1)2=1
B.(x+1)2+(y+1)2=1
C.(x+1)2+(y+1)2=2
D.(x-1)2+(y-1)2=2
解析:选D 因为圆心为(1,1)且过原点,所以该圆的半径r==,则该圆的方程为(x-1)2+(y-1)2=2,选D.
3.若坐标原点在圆(x-m)2+(y+m)2=4的内部,则实数m的取值范围是( )
A.(-1,1) B.(-,)
C.(-,) D.
解析:选C ∵点(0,0)在(x-m)2+(y+m)2=4的内部,∴(0-m)2+(0+m)2<4,解得-<m<.故选C.
(三)填一填
4.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.
解析:法一:设圆的方程为x2+y2+Dx+Ey+F=0.
∵圆经过点(0,0),(1,1),(2,0),
∴解得
∴圆的方程为x2+y2-2x=0.
法二:画出示意图如图所示,
则△OAB为等腰直角三角形,
故所求圆的圆心为(1,0),半径为1,
所以所求圆的方程为(x-1)2+y2=1,
即x2+y2-2x=0.
答案:x2+y2-2x=0
5.若方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是________.
解析:方程x2+y2+ax+2ay+2a2+a-1=0可化为2+(y+a)2=-a2-a+1,因为该方程表示圆,所以-a2-a+1>0,即3a2+4a-4<0,所以-2 答案:
[典例] (1)圆心在y轴上,半径长为1,且过点A(1,2)的圆的方程是( )
A.x2+(y-2)2=1
B.x2+(y+2)2=1
C.(x-1)2+(y-3)2=1
D.x2+(y-3)2=4
(2)圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的方程为________.
[解析] (1)根据题意可设圆的方程为x2+(y-b)2=1,因为圆过点A(1,2),所以12+(2-b)2=1,解得b=2,所以所求圆的方程为x2+(y-2)2=1.
(2)法一:几何法
设点C为圆心,因为点C在直线x-2y-3=0上,所以可设点C的坐标为(2a+3,a).
又该圆经过A,B两点,所以|CA|=|CB|,
即
=,解得a=-2,
所以圆心C的坐标为(-1,-2),半径r=,
故所求圆的方程为(x+1)2+(y+2)2=10.
法二:待定系数法
设所求圆的标准方程为(x-a)2+(y-b)2=r2,
由题意得
解得a=-1,b=-2,r2=10,
故所求圆的方程为(x+1)2+(y+2)2=10.
法三:待定系数法
设圆的一般方程为x2+y2+Dx+Ey+F=0,
则圆心坐标为,
由题意得
解得D=2,E=4,F=-5.
故所求圆的方程为x2+y2+2x+4y-5=0.
[答案] (1)A (2)x2+y2+2x+4y-5=0
[解题技法]
1.求圆的方程的两种方法
几何法
根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程
待定
系数法
①根据题意,选择标准方程与一般方程;
②根据条件列出关于a,b,r或D,E,F的方程组;
③解出a,b,r或D,E,F,代入标准方程或一般方程
2.确定圆心位置的方法
(1)圆心在过切点且与切线垂直的直线上.
(2)圆心在圆的任意弦的垂直平分线上.
(3)两圆相切时,切点与两圆圆心共线.
[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质.
[题组训练]
1.已知圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为( )
A.2+y2= B.2+y2=
C.2+y2= D.2+y2=
解析:选C 法一:根据题意,设圆E的圆心坐标为(a,0)(a>0),半径为r,则圆E的标准方程为(x-a)2+y2=r2(a>0).
由题意得解得
所以圆E的标准方程为2+y2=.
法二:设圆E的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
则由题意得解得
所以圆E的一般方程为x2+y2-x-1=0,即2+y2=.
法三:因为圆E经过点A(0,1),B(2,0),
所以圆E的圆心在线段AB的垂直平分线y-=2(x-1)上.
又圆E的圆心在x轴的正半轴上,
所以圆E的圆心坐标为.
则圆E的半径为|EB|= =,
所以圆E的标准方程为2+y2=.
2.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________________.
解析:过切点且与x+y-1=0垂直的直线方程为x-y-5=0,与y=-4x联立可求得圆心为(1,-4).
所以半径r==2,
故所求圆的方程为(x-1)2+(y+4)2=8.
答案:(x-1)2+(y+4)2=8
3.已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为________________.
解析:设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
将P,Q两点的坐标分别代入得
又令y=0,得x2+Dx+F=0.③
设x1,x2是方程③的两根,
由|x1-x2|=6,得D2-4F=36,④
联立①②④,解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.
故所求圆的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.
答案:x2+y2-2x-4y-8=0或x2+y2-6x-8y=0
[典例] (1)点P(4,-2)与圆x2+y2=4上任意一点连线的中点的轨迹方程是( )
A.(x-2)2+(y+1)2=1
B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=4
D.(x+2)2+(y-1)2=1
(2)已知圆C:(x-1)2+(y-1)2=9,过点A(2,3)作圆C的任意弦,则这些弦的中点P的轨迹方程为________.
[解析] (1)设圆上任意一点为(x1,y1),中点为(x,y),则即代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.
(2)设P(x,y),圆心C(1,1).
因为P点是过点A的弦的中点,所以⊥.
又因为=(2-x,3-y),=(1-x,1-y).
所以(2-x)·(1-x)+(3-y)·(1-y)=0.
所以点P的轨迹方程为2+(y-2)2=.
[答案] (1)A (2)2+(y-2)2=
[变透练清]
1.若将本例(2)中点A(2,3)换成圆上的点B(1,4),其他条件不变,则这些弦的中点P的轨迹方程为________.
解析:设P(x,y),圆心C(1,1).当点P与点B不重合时,因为P点是过点B的弦的中点,所以⊥.
又因为=(1-x,4-y),=(1-x,1-y).
所以(1-x)·(1-x)+(4-y)·(1-y)=0.
所以点P的轨迹方程为(x-1)2+2=;
当点P与点B重合时,点P满足上述方程.
综上所述,点P的轨迹方程为(x-1)2+2=.
答案:(x-1)2+2=
2.已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.
(1)求线段AP中点的轨迹方程;
(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.
解:(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).
因为P点在圆x2+y2=4上,
所以(2x-2)2+(2y)2=4.
故线段AP中点的轨迹方程为(x-1)2+y2=1.
(2)设PQ的中点为N(x,y).
在Rt△PBQ中,|PN|=|BN|,
设O为坐标原点,连接ON,则ON⊥PQ,
所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,
所以x2+y2+(x-1)2+(y-1)2=4.
故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.
[解题技法] 与圆有关的轨迹问题的3种常用求法
A级——保大分专练
1.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( )
A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2
C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8
解析:选B 直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为,故圆的方程为(x-1)2+(y-1)2=2.
2.若圆x2+y2+2ax-b2=0的半径为2,则点(a,b)到原点的距离为( )
A.1 B.2
C. D.4
解析:选B 由半径r===2,得=2.
∴点(a,b)到原点的距离d==2,故选B.
3.以(a,1)为圆心,且与两条直线2x-y+4=0与2x-y-6=0同时相切的圆的标准方程为( )
A.(x-1)2+(y-1)2=5
B.(x+1)2+(y+1)2=5
C.(x-1)2+y2=5
D.x2+(y-1)2=5
解析:选A 由题意知,圆心到这两条直线的距离相等,即圆心到直线2x-y+4=0的距离d==,解得a=1,d=,∵直线与圆相切,∴r=d=, ∴圆的标准方程为(x-1)2+(y-1)2=5.
4.(2019·银川模拟)方程|y|-1=表示的曲线是( )
A.一个椭圆 B.一个圆
C.两个圆 D.两个半圆
解析:选D 由题意知|y|-1≥0,则y≥1或y≤-1,当y≥1时,原方程可化为(x-1)2+(y-1)2=1(y≥1),其表示以(1,1)为圆心、1为半径、直线y=1上方的半圆;当y≤-1时,原方程可化为(x-1)2+(y+1)2=1(y≤-1),其表示以(1,-1)为圆心、1为半径、直线y=-1下方的半圆.所以方程|y|-1=表示的曲线是两个半圆,选D.
5.已知a∈R,若方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则此圆的圆心坐标为( )
A.(-2,-4) B.
C.(-2,-4)或 D.不确定
解析:选A ∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=-1或a=2.当a=-1时,方程化为x2+y2+4x+8y-5=0.配方,得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(-2,-4),半径为5.当a=2时,方程化为x2+y2+x+2y+=0,此时方程不表示圆.故选A.
6.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为( )
A.(x+1)2+y2=2 B.(x+1)2+y2=8
C.(x-1)2+y2=2 D.(x-1)2+y2=8
解析:选A 直线x-y+1=0与x轴的交点(-1,0).
根据题意,圆C的圆心坐标为(-1,0).
因为圆与直线x+y+3=0相切,所以半径为圆心到切线的距离,
即r=d==,
则圆的方程为(x+1)2+y2=2.
7.圆C的直径的两个端点分别是A(-1,2),B(1,4),则圆C的标准方程为________.
解析:设圆心C的坐标为(a,b),
则a==0,b==3,故圆心C(0,3).
半径r=|AB|==.
∴圆C的标准方程为x2+(y-3)2=2.
答案:x2+(y-3)2=2
8.已知圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,)在圆C内,则m的取值范围为________.
解析:设圆心为C(a,0),由|CA|=|CB|,
得(a+1)2+12=(a-1)2+32,解得a=2.
半径r=|CA|==.
故圆C的方程为(x-2)2+y2=10.
由题意知(m-2)2+()2<10,
解得0<m<4.
答案:(0,4)
9.若一个圆的圆心是抛物线x2=4y的焦点,且该圆与直线y=x+3相切,则该圆的标准方程是________________.
解析:抛物线x2=4y的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x2+(y-1)2=r2(r>0),因为该圆与直线y=x+3相切,所以r=d==,故该圆的标准方程是x2+(y-1)2=2.
答案:x2+(y-1)2=2
10.(2019·德州模拟)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的标准方程为________________.
解析:因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d==,解得a=2,所以圆C的半径r=|CM|==3,所以圆C的标准方程为(x-2)2+y2=9.
答案:(x-2)2+y2=9
11.已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.
(1)求直线CD的方程;
(2)求圆P的方程.
解:(1)直线AB的斜率k=1,AB的中点坐标为(1,2).
所以直线CD的方程为y-2=-(x-1),
即x+y-3=0.
(2)设圆心P(a,b),则由P在CD上得a+b-3=0.①
又直径|CD|=4,
所以|PA|=2.
所以(a+1)2+b2=40.②
由①②解得或
所以圆心P(-3,6)或P(5,-2),
所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.
12.已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求:
(1)直角顶点C的轨迹方程;
(2)直角边BC的中点M的轨迹方程.
解:(1)法一:设C(x,y),因为A,B,C三点不共线,
所以y≠0.
因为AC⊥BC,所以kAC·kBC=-1,
又kAC=,kBC=,
所以·=-1,
化简得x2+y2-2x-3=0.
因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).
法二:设AB的中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知|CD|=|AB|=2.由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C三点不共线,所以应除去与x轴的交点).
所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).
(2)设M(x,y),C(x0,y0),因为B(3,0),M是线段BC的中点,由中点坐标公式得x=,y=,所以x0=2x-3,y0=2y.
由(1)知,点C的轨迹方程为(x-1)2+y2=4(y≠0),将x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4,即(x-2)2+y2=1.
因此动点M的轨迹方程为(x-2)2+y2=1(y≠0).
B级——创高分自选
1.(2019·伊春三校联考)已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为( )
A.(x+2)2+(y-1)2=1 B.(x-2)2+(y+2)2=1
C.(x+2)2+(y+2)2=1 D.(x-2)2+(y-2)2=1
解析:选B 圆C1:(x+1)2+(y-1)2=1,圆心C1为(-1,1),半径为1.易知点C1(-1,1)关于直线x-y-1=0对称的点为C2,设C2(a,b),则解得所以C2(2,-2),所以圆C2的圆心为C2(2,-2),半径为1,所以圆C2的方程为(x-2)2+(y+2)2=1.故选B.
2.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为________________.
解析:因为直线mx-y-2m-1=0(m∈R)恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r=,故所求圆的标准方程为(x-1)2+y2=2.
答案:(x-1)2+y2=2
3.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB的中点M的轨迹C的方程.
解:(1)把圆C1的方程化为标准方程得(x-3)2+y2=4,
∴圆C1的圆心坐标为C1(3,0).
(2)设M(x,y),∵A,B为过原点的直线l与圆C1的交点,且M为AB的中点,
∴由圆的性质知:MC1⊥MO,∴·=0.
又∵=(3-x,-y),=(-x,-y),
∴x2-3x+y2=0.
易知直线l的斜率存在,故设直线l的方程为y=mx,
当直线l与圆C1相切时,
圆心到直线l的距离d==2,
解得m=±.
把相切时直线l的方程代入圆C1的方程化简得
9x2-30x+25=0,解得x=.
当直线l经过圆C1的圆心时,M的坐标为(3,0).
又∵直线l与圆C1交于A,B两点,M为AB的中点,
∴
∴点M的轨迹C的方程为x2-3x+y2=0,其中
一、基础知识批注——理解深一点
1.圆的定义及方程
定义
平面内与定点的距离等于定长的点的集合(轨迹)
标准方程
(x-a)2+(y-b)2=r2(r>0)
❶
圆心:(a,b),半径: r
一般方程
x2+y2+Dx+Ey+F=0,
(D2+E2-4F>0)
❷
圆心:,
半径:
❶标准方程强调圆心坐标为(a,b),半径为r.
❷(1)当D2+E2-4F=0时,方程表示一个点;
(2)当D2+E2-4F<0时,方程不表示任何图形.
2.点与圆的位置关系
点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:
(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2r2.
(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2r2.
(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2r2.
二、常用结论汇总——规律多一点
(1)二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是
(2)以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.
三、基础小题强化——功底牢一点
(1)确定圆的几何要素是圆心与半径.( )
(2)方程(x-a)2+(y-b)2=t2(t∈R)表示圆心为(a,b),半径为t的一个圆.( )
(3)方程x2+y2+4mx-2y=0不一定表示圆.( )
(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x+y+Dx0+Ey0+F>0.( )
答案:(1)√ (2)× (3)× (4)√
(二)选一选
1.圆x2+y2-4x+6y=0的圆心坐标是( )
A.(2,3) B.(-2,3)
C.(-2,-3) D.(2,-3)
解析:选D 因为圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3).
2.圆心为(1,1)且过原点的圆的方程是( )
A.(x-1)2+(y-1)2=1
B.(x+1)2+(y+1)2=1
C.(x+1)2+(y+1)2=2
D.(x-1)2+(y-1)2=2
解析:选D 因为圆心为(1,1)且过原点,所以该圆的半径r==,则该圆的方程为(x-1)2+(y-1)2=2,选D.
3.若坐标原点在圆(x-m)2+(y+m)2=4的内部,则实数m的取值范围是( )
A.(-1,1) B.(-,)
C.(-,) D.
解析:选C ∵点(0,0)在(x-m)2+(y+m)2=4的内部,∴(0-m)2+(0+m)2<4,解得-<m<.故选C.
(三)填一填
4.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.
解析:法一:设圆的方程为x2+y2+Dx+Ey+F=0.
∵圆经过点(0,0),(1,1),(2,0),
∴解得
∴圆的方程为x2+y2-2x=0.
法二:画出示意图如图所示,
则△OAB为等腰直角三角形,
故所求圆的圆心为(1,0),半径为1,
所以所求圆的方程为(x-1)2+y2=1,
即x2+y2-2x=0.
答案:x2+y2-2x=0
5.若方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是________.
解析:方程x2+y2+ax+2ay+2a2+a-1=0可化为2+(y+a)2=-a2-a+1,因为该方程表示圆,所以-a2-a+1>0,即3a2+4a-4<0,所以-2 答案:
[典例] (1)圆心在y轴上,半径长为1,且过点A(1,2)的圆的方程是( )
A.x2+(y-2)2=1
B.x2+(y+2)2=1
C.(x-1)2+(y-3)2=1
D.x2+(y-3)2=4
(2)圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的方程为________.
[解析] (1)根据题意可设圆的方程为x2+(y-b)2=1,因为圆过点A(1,2),所以12+(2-b)2=1,解得b=2,所以所求圆的方程为x2+(y-2)2=1.
(2)法一:几何法
设点C为圆心,因为点C在直线x-2y-3=0上,所以可设点C的坐标为(2a+3,a).
又该圆经过A,B两点,所以|CA|=|CB|,
即
=,解得a=-2,
所以圆心C的坐标为(-1,-2),半径r=,
故所求圆的方程为(x+1)2+(y+2)2=10.
法二:待定系数法
设所求圆的标准方程为(x-a)2+(y-b)2=r2,
由题意得
解得a=-1,b=-2,r2=10,
故所求圆的方程为(x+1)2+(y+2)2=10.
法三:待定系数法
设圆的一般方程为x2+y2+Dx+Ey+F=0,
则圆心坐标为,
由题意得
解得D=2,E=4,F=-5.
故所求圆的方程为x2+y2+2x+4y-5=0.
[答案] (1)A (2)x2+y2+2x+4y-5=0
[解题技法]
1.求圆的方程的两种方法
几何法
根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程
待定
系数法
①根据题意,选择标准方程与一般方程;
②根据条件列出关于a,b,r或D,E,F的方程组;
③解出a,b,r或D,E,F,代入标准方程或一般方程
2.确定圆心位置的方法
(1)圆心在过切点且与切线垂直的直线上.
(2)圆心在圆的任意弦的垂直平分线上.
(3)两圆相切时,切点与两圆圆心共线.
[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质.
[题组训练]
1.已知圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为( )
A.2+y2= B.2+y2=
C.2+y2= D.2+y2=
解析:选C 法一:根据题意,设圆E的圆心坐标为(a,0)(a>0),半径为r,则圆E的标准方程为(x-a)2+y2=r2(a>0).
由题意得解得
所以圆E的标准方程为2+y2=.
法二:设圆E的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
则由题意得解得
所以圆E的一般方程为x2+y2-x-1=0,即2+y2=.
法三:因为圆E经过点A(0,1),B(2,0),
所以圆E的圆心在线段AB的垂直平分线y-=2(x-1)上.
又圆E的圆心在x轴的正半轴上,
所以圆E的圆心坐标为.
则圆E的半径为|EB|= =,
所以圆E的标准方程为2+y2=.
2.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________________.
解析:过切点且与x+y-1=0垂直的直线方程为x-y-5=0,与y=-4x联立可求得圆心为(1,-4).
所以半径r==2,
故所求圆的方程为(x-1)2+(y+4)2=8.
答案:(x-1)2+(y+4)2=8
3.已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为________________.
解析:设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
将P,Q两点的坐标分别代入得
又令y=0,得x2+Dx+F=0.③
设x1,x2是方程③的两根,
由|x1-x2|=6,得D2-4F=36,④
联立①②④,解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.
故所求圆的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.
答案:x2+y2-2x-4y-8=0或x2+y2-6x-8y=0
[典例] (1)点P(4,-2)与圆x2+y2=4上任意一点连线的中点的轨迹方程是( )
A.(x-2)2+(y+1)2=1
B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=4
D.(x+2)2+(y-1)2=1
(2)已知圆C:(x-1)2+(y-1)2=9,过点A(2,3)作圆C的任意弦,则这些弦的中点P的轨迹方程为________.
[解析] (1)设圆上任意一点为(x1,y1),中点为(x,y),则即代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.
(2)设P(x,y),圆心C(1,1).
因为P点是过点A的弦的中点,所以⊥.
又因为=(2-x,3-y),=(1-x,1-y).
所以(2-x)·(1-x)+(3-y)·(1-y)=0.
所以点P的轨迹方程为2+(y-2)2=.
[答案] (1)A (2)2+(y-2)2=
[变透练清]
1.若将本例(2)中点A(2,3)换成圆上的点B(1,4),其他条件不变,则这些弦的中点P的轨迹方程为________.
解析:设P(x,y),圆心C(1,1).当点P与点B不重合时,因为P点是过点B的弦的中点,所以⊥.
又因为=(1-x,4-y),=(1-x,1-y).
所以(1-x)·(1-x)+(4-y)·(1-y)=0.
所以点P的轨迹方程为(x-1)2+2=;
当点P与点B重合时,点P满足上述方程.
综上所述,点P的轨迹方程为(x-1)2+2=.
答案:(x-1)2+2=
2.已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.
(1)求线段AP中点的轨迹方程;
(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.
解:(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).
因为P点在圆x2+y2=4上,
所以(2x-2)2+(2y)2=4.
故线段AP中点的轨迹方程为(x-1)2+y2=1.
(2)设PQ的中点为N(x,y).
在Rt△PBQ中,|PN|=|BN|,
设O为坐标原点,连接ON,则ON⊥PQ,
所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,
所以x2+y2+(x-1)2+(y-1)2=4.
故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.
[解题技法] 与圆有关的轨迹问题的3种常用求法
A级——保大分专练
1.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( )
A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2
C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8
解析:选B 直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为,故圆的方程为(x-1)2+(y-1)2=2.
2.若圆x2+y2+2ax-b2=0的半径为2,则点(a,b)到原点的距离为( )
A.1 B.2
C. D.4
解析:选B 由半径r===2,得=2.
∴点(a,b)到原点的距离d==2,故选B.
3.以(a,1)为圆心,且与两条直线2x-y+4=0与2x-y-6=0同时相切的圆的标准方程为( )
A.(x-1)2+(y-1)2=5
B.(x+1)2+(y+1)2=5
C.(x-1)2+y2=5
D.x2+(y-1)2=5
解析:选A 由题意知,圆心到这两条直线的距离相等,即圆心到直线2x-y+4=0的距离d==,解得a=1,d=,∵直线与圆相切,∴r=d=, ∴圆的标准方程为(x-1)2+(y-1)2=5.
4.(2019·银川模拟)方程|y|-1=表示的曲线是( )
A.一个椭圆 B.一个圆
C.两个圆 D.两个半圆
解析:选D 由题意知|y|-1≥0,则y≥1或y≤-1,当y≥1时,原方程可化为(x-1)2+(y-1)2=1(y≥1),其表示以(1,1)为圆心、1为半径、直线y=1上方的半圆;当y≤-1时,原方程可化为(x-1)2+(y+1)2=1(y≤-1),其表示以(1,-1)为圆心、1为半径、直线y=-1下方的半圆.所以方程|y|-1=表示的曲线是两个半圆,选D.
5.已知a∈R,若方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则此圆的圆心坐标为( )
A.(-2,-4) B.
C.(-2,-4)或 D.不确定
解析:选A ∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=-1或a=2.当a=-1时,方程化为x2+y2+4x+8y-5=0.配方,得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(-2,-4),半径为5.当a=2时,方程化为x2+y2+x+2y+=0,此时方程不表示圆.故选A.
6.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为( )
A.(x+1)2+y2=2 B.(x+1)2+y2=8
C.(x-1)2+y2=2 D.(x-1)2+y2=8
解析:选A 直线x-y+1=0与x轴的交点(-1,0).
根据题意,圆C的圆心坐标为(-1,0).
因为圆与直线x+y+3=0相切,所以半径为圆心到切线的距离,
即r=d==,
则圆的方程为(x+1)2+y2=2.
7.圆C的直径的两个端点分别是A(-1,2),B(1,4),则圆C的标准方程为________.
解析:设圆心C的坐标为(a,b),
则a==0,b==3,故圆心C(0,3).
半径r=|AB|==.
∴圆C的标准方程为x2+(y-3)2=2.
答案:x2+(y-3)2=2
8.已知圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,)在圆C内,则m的取值范围为________.
解析:设圆心为C(a,0),由|CA|=|CB|,
得(a+1)2+12=(a-1)2+32,解得a=2.
半径r=|CA|==.
故圆C的方程为(x-2)2+y2=10.
由题意知(m-2)2+()2<10,
解得0<m<4.
答案:(0,4)
9.若一个圆的圆心是抛物线x2=4y的焦点,且该圆与直线y=x+3相切,则该圆的标准方程是________________.
解析:抛物线x2=4y的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x2+(y-1)2=r2(r>0),因为该圆与直线y=x+3相切,所以r=d==,故该圆的标准方程是x2+(y-1)2=2.
答案:x2+(y-1)2=2
10.(2019·德州模拟)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的标准方程为________________.
解析:因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d==,解得a=2,所以圆C的半径r=|CM|==3,所以圆C的标准方程为(x-2)2+y2=9.
答案:(x-2)2+y2=9
11.已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.
(1)求直线CD的方程;
(2)求圆P的方程.
解:(1)直线AB的斜率k=1,AB的中点坐标为(1,2).
所以直线CD的方程为y-2=-(x-1),
即x+y-3=0.
(2)设圆心P(a,b),则由P在CD上得a+b-3=0.①
又直径|CD|=4,
所以|PA|=2.
所以(a+1)2+b2=40.②
由①②解得或
所以圆心P(-3,6)或P(5,-2),
所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.
12.已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求:
(1)直角顶点C的轨迹方程;
(2)直角边BC的中点M的轨迹方程.
解:(1)法一:设C(x,y),因为A,B,C三点不共线,
所以y≠0.
因为AC⊥BC,所以kAC·kBC=-1,
又kAC=,kBC=,
所以·=-1,
化简得x2+y2-2x-3=0.
因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).
法二:设AB的中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知|CD|=|AB|=2.由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C三点不共线,所以应除去与x轴的交点).
所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).
(2)设M(x,y),C(x0,y0),因为B(3,0),M是线段BC的中点,由中点坐标公式得x=,y=,所以x0=2x-3,y0=2y.
由(1)知,点C的轨迹方程为(x-1)2+y2=4(y≠0),将x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4,即(x-2)2+y2=1.
因此动点M的轨迹方程为(x-2)2+y2=1(y≠0).
B级——创高分自选
1.(2019·伊春三校联考)已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为( )
A.(x+2)2+(y-1)2=1 B.(x-2)2+(y+2)2=1
C.(x+2)2+(y+2)2=1 D.(x-2)2+(y-2)2=1
解析:选B 圆C1:(x+1)2+(y-1)2=1,圆心C1为(-1,1),半径为1.易知点C1(-1,1)关于直线x-y-1=0对称的点为C2,设C2(a,b),则解得所以C2(2,-2),所以圆C2的圆心为C2(2,-2),半径为1,所以圆C2的方程为(x-2)2+(y+2)2=1.故选B.
2.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为________________.
解析:因为直线mx-y-2m-1=0(m∈R)恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r=,故所求圆的标准方程为(x-1)2+y2=2.
答案:(x-1)2+y2=2
3.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB的中点M的轨迹C的方程.
解:(1)把圆C1的方程化为标准方程得(x-3)2+y2=4,
∴圆C1的圆心坐标为C1(3,0).
(2)设M(x,y),∵A,B为过原点的直线l与圆C1的交点,且M为AB的中点,
∴由圆的性质知:MC1⊥MO,∴·=0.
又∵=(3-x,-y),=(-x,-y),
∴x2-3x+y2=0.
易知直线l的斜率存在,故设直线l的方程为y=mx,
当直线l与圆C1相切时,
圆心到直线l的距离d==2,
解得m=±.
把相切时直线l的方程代入圆C1的方程化简得
9x2-30x+25=0,解得x=.
当直线l经过圆C1的圆心时,M的坐标为(3,0).
又∵直线l与圆C1交于A,B两点,M为AB的中点,
∴
相关资料
更多