(江苏版)2019届高考物理一轮复习课时检测28《 磁场对运动电荷的作用》(含解析)
展开课时跟踪检测(二十八) 磁场对运动电荷的作用
对点训练:对洛伦兹力的理解
1.[多选](2018·徐州六校联考)有关电荷所受电场力和磁场力的说法中,正确的是( )
A.电荷在磁场中一定受磁场力的作用
B.电荷在电场中一定受电场力的作用
C.电荷受电场力的方向与该处的电场方向一致
D.电荷若受磁场力,则受力方向与该处的磁场方向垂直
解析:选BD 带电粒子受洛伦兹力的条件:运动电荷且速度方向与磁场方向不平行,故电荷在磁场中不一定受磁场力作用,A项错误;电场具有对放入其中的电荷有力的作用的性质,B项正确;正电荷受力方向与电场方向一致,而负电荷受力方向与电场方向相反,C项错误;磁场对运动电荷的作用力垂直磁场方向且垂直速度方向,D项正确。
2.(2018·南通期末)初速度为v0的电子(重力不计),沿平行于通电长直导线的方向射出,直导线中电流方向与电子的初始运动方向如图所示,则( )
A.电子将向右偏转,速率不变
B.电子将向左偏转,速率改变
C.电子将向左偏转,速率不变
D.电子将向右偏转,速率改变
解析:选A 由安培定则可知导线右侧磁场方向垂直纸面向里,然后根据左手定则可知运动电子所受洛伦兹力方向向右,因此电子将向右偏转,洛伦兹力不做功,故其速率不变,故B、C、D错误,A正确。
对点训练:带电粒子在匀强磁场中的运动
3.(2018·苏州模拟)如图所示,一质量为m、带电量为q的粒子,以速度v垂直射入一有界匀强磁场区域内,速度方向与磁场左边界垂直,从右边界离开磁场时速度方向偏转角θ=30°,磁场区域的宽度为d,则下列说法正确的是( )
A.该粒子带正电
B.磁感应强度B=
C.粒子在磁场中做圆周运动的半径R=d
D.粒子在磁场中运动的时间t=
解析:选D 粒子运动轨迹如图所示,由图可知,粒子在磁场中向下偏转,根据左手定则可知,粒子应带负电,故A错误;由几何关系可知,Rsin 30°=d,解得:R=2d,根据洛伦兹力充当向心力可知,Bqv=m,解得:B==,故B、C错误;粒子在磁场中转过的圆心角为30°,粒子在磁场中运动时间t=×=,故D正确。
4.(2018·银川一中模拟)如图所示,在圆形区域内存在垂直纸面向外的匀强磁场,AB是圆的直径。一带电粒子从A点射入磁场,速度大小为v、方向与AB成30°角时,恰好从B点飞出磁场,且粒子在磁场中运动的时间为t;若同一带电粒子从A点沿AB方向射入磁场,也经时间t飞出磁场,则其速度大小为( )
A.v B.v
C.v D.v
解析:选A 粒子在磁场中运动,运动的时间周期与粒子的速度的大小无关,分析粒子的运动的情况,可以判断第二个粒子的运动轨迹半径,即可根据牛顿第二定律求出速度大小。设圆形区域的半径为R。带电粒子进入磁场中做匀速圆周运动,由洛伦兹力提供向心力,则有qvB=m,得r=,r∝v ①;当粒子从B点飞出磁场时,入射速度与出射速度与AB的夹角相等,所以速度的偏转角为60°,轨迹对应的圆心角为60°。根据几何知识得知:轨迹半径为r1=2R ②,当粒子从A点沿AB方向射入磁场时,经过磁场的时间也是t,说明轨迹对应的圆心角与第一种情况相等,也是60°。根据几何知识得,粒子的轨迹半径为r2=R ③,则由①得:== ,则得v′=v,故A正确。
对点训练:带电粒子在匀强磁场中的多解问题
5.(2018·南京模拟)如图所示,在x>0,y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B。现有一质量为m、电荷量为q的带正电粒子,从x轴上的某点P沿着与x轴正方向成30°角的方向射入磁场。不计重力的影响,则下列有关说法中正确的是( )
A.只要粒子的速率合适,粒子就可能通过坐标原点
B.粒子在磁场中运动所经历的时间一定为
C.粒子在磁场中运动所经历的时间可能为
D.粒子在磁场中运动所经历的时间可能为
解析:选C 带正电的粒子从P点沿与x轴正方向成30°角的方向射入磁场中,则圆心在过P点与速度方向垂直的直线上,如图所示,粒子在磁场中要想到达O点,转过的圆心角肯定大于180°,因磁场有边界,故粒子不可能通过坐标原点,故选项A错误;由于P点的位置不确定,所以粒子在磁场中运动的圆弧对应的圆心角也不同,最大的圆心角是圆弧与y轴相切时即300°,运动时间为T,而最小的圆心角为P点在坐标原点即120°,运动时间为T,而T=,故粒子在磁场中运动所经历的时间最长为,最短为,选项C正确,B、D错误。
6.[多选](2018·苏北六校调考)如图所示,xOy平面的一、二、三象限内存在垂直纸面向外,磁感应强度B=1 T的匀强磁场,ON为处于y轴负方向的弹性绝缘薄挡板,长度为9 m,M点为x轴正方向上一点,OM=3 m。现有一个比荷大小为=1.0 C/kg可视为质点带正电的小球(重力不计)从挡板下端N处小孔以不同的速度向x轴负方向射入磁场,若与挡板相碰就以原速率弹回,且碰撞时间不计,碰撞时电荷量不变,小球最后都能经过M点,则小球射入的速度大小可能是( )
A.3 m/s B.3.75 m/s
C.4 m/s D.5 m/s
解析:选ABD 因为小球通过y轴的速度方向一定是+x方向,故带电小球圆周运动轨迹半径最小值为3 m,即Rmin=,解得vmin=3 m/s;经验证,带电小球以3 m/s速度进入磁场,与ON碰撞一次,再经四分之三圆周经过M点,如图1所示,A项正确;当带电小球与ON不碰撞,直接经过M点,如图2所示,小球速度沿-x方向射入磁场,则圆心一定在y轴上,做出MN的垂直平分线,交于y轴的点即得圆心位置,由几何关系解得轨迹半径最大值Rmax=5 m,又Rmax=,解得vmax=5 m/s,D项正确;当小球速度大于3 m/s、小于5 m/s时,轨迹如图3所示,由几何条件计算可知轨迹半径R=3.75 m,由半径公式R=,得v=3.75 m/s,B项正确,由分析易知选项C错误。
对点训练:带电粒子在有界磁场中的临界极值问题
7.(2018·安徽师大附中模拟)如图所示,在x轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为B。在xOy平面内,从原点O处沿与x轴正方向成θ角(0<θ<π)以速率v发射一个带正电的粒子(重力不计)。则下列说法正确的是( )
A.若v一定,θ越大,则粒子在磁场中运动的时间越短
B.若v一定,θ越大,则粒子离开磁场的位置距O点越远
C.若θ一定,v越大,则粒子在磁场中运动的角速度越大
D.若θ一定,v越大,则粒子在磁场中运动的时间越短
解析:选A 由左手定则可知,带正电的粒子向左偏转。若v一定,θ越大,则粒子在磁场中运动的时间越短,选项A正确;若v一定,θ等于90°时,粒子离开磁场的位置距O点最远,选项B错误;若θ一定,粒子在磁场中运动的周期与v无关,由ω=可知粒子在磁场中运动的角速度与v无关,选项C、D错误。
8.如图所示,在边长为2a的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m、电荷量为-q的带电粒子(重力不计)从AB边的中心O以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB边的夹角为60°,若要使粒子能从AC边穿出磁场,则匀强磁场的大小B需满足( )
A.B> B.B<
C.B> D.B<
解析:选D 粒子刚好达到C点时,其运动轨迹与AC相切,如图所示。则粒子运动的半径为r=acot 30°=a,洛伦兹力提供向心力,由牛顿第二定律得:qvB=m,解得:r=,粒子要能从AC边射出,粒子运行的半径:r>a,解得:B<,故D正确。
9.(2018·马鞍山二检)如图所示,abcd为一正方形边界的匀强磁场区域,磁场边界边长为L,三个粒子以相同的速度从a点沿ac方向射入,粒子1从b点射出,粒子2从c点射出,粒子3从cd边垂直于磁场边界射出,不考虑粒子的重力和粒子间的相互作用。根据以上信息,可以确定( )
A.粒子1带负电,粒子2不带电,粒子3带正电
B.粒子1和粒子3的比荷之比为2∶1
C.粒子1和粒子3在磁场中运动时间之比为4∶1
D.粒子3的射出位置与d点相距
解析:选B 根据左手定则可知粒子1带正电,粒子2不带电,粒子3带负电,选项A错误;粒子1在磁场中的轨迹为四分之一圆周,半径r1=L,时间t1=T=×=,粒子3在磁场中的轨迹为八分之一圆周,半径r3=L,时间t3=T=×=,则t1=t3,选项C错误;由r=可知粒子1和粒子3的比荷之比为2∶1,选项B正确;粒子3的射出位置与d点相距(-1)L,选项D错误。
考点综合训练
10.(2018·徐州模拟)如图所示,圆心为O、半径为R的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O为坐标原点建立坐标系,在y=-3R处有一垂直y轴的固定绝缘挡板,一质量为m、带电量为+q的粒子,与x轴成60°角从M点(-R,0)以初速度v0斜向上射入磁场区域,经磁场偏转后由N点离开磁场(N点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场。不计粒子的重力,求:
(1)磁感应强度B的大小;
(2)N点的坐标;
(3)粒子从M点进入磁场到最终离开磁场区域运动的总时间。
解析:(1)设粒子在磁场中运动的半径为r,根据题设条件画出粒子的运动轨迹,如图所示,由几何关系得:r=R
由洛伦兹力等于向心力:qv0B=m
解得:B=。
(2)由图几何关系可得:
x=Rsin 60°=R
y=-Rcos 60°=-R
N点的坐标为。
(3)粒子在磁场中运动的周期T=
由几何知识得粒子在磁场中运动的圆心角共为180°,粒子在磁场中运动时间t1=
粒子在磁场外的运动,由匀速直线运动可得:从出磁场到再次进磁场的时间t2=,其中s=3R-R
粒子从M点进入磁场到最终离开磁场区域运动的总时间t=t1+t2,解得:t=。
答案:(1) (2) (3)
11.(2016·海南高考)如图,A、C两点分别位于x轴和y轴上,∠OCA=30°,OA的长度为L。在△OCA区域内有垂直于xOy平面向里的匀强磁场。质量为m、电荷量为q的带正电粒子,以平行于y轴的方向从OA边射入磁场。已知粒子从某点射入时,恰好垂直于OC边射出磁场,且粒子在磁场中运动的时间为t0。不计重力。
(1)求磁场的磁感应强度的大小;
(2)若粒子先后从两不同点以相同的速度射入磁场,恰好从OC边上的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和;
(3)若粒子从某点射入磁场后,其运动轨迹与AC边相切,且在磁场内运动的时间为t0,求粒子此次入射速度的大小。
解析:(1)粒子在磁场中做匀速圆周运动,在时间t0内其速度方向改变了90°,故其周期T=4t0 ①
设磁感应强度大小为B,粒子速度为v,圆周运动的半径为r。由洛伦兹力公式和牛顿定律得qvB=m ②
匀速圆周运动的速度满足v= ③
联立①②③式得B=。 ④
(2)设粒子从OA边两个不同位置射入磁场,能从OC边上的同一点P射出磁场,粒子在磁场中运动的轨迹如图(a)所示。设两轨迹所对应的圆心角分别为θ1和θ2。由几何关系有θ1=180°-θ2 ⑤
粒子两次在磁场中运动的时间分别为t1与t2,则t1+t2==2t0。 ⑥
(3)如图(b),由题给条件可知,该粒子在磁场区域中的轨迹圆弧对应的圆心角为150°。设O′为圆弧的圆心,圆弧的半径为r0,圆弧与AC相切与B点,从D点射出磁场,由几何关系和题给条件可知,此时有∠OO′D=∠BO′A=30° ⑦
r0cos∠OO′D+=L ⑧
设粒子此次入射速度的大小为v0,由圆周运动规律v0= ⑨
联立①⑦⑧⑨式得v0=。 ⑩
答案:(1) (2)2t0 (3)