|学案下载
搜索
    上传资料 赚现金
    2021届高考数学人教版一轮创新教学案:第10章第8讲 n次独立重复试验与二项分布
    立即下载
    加入资料篮
    2021届高考数学人教版一轮创新教学案:第10章第8讲 n次独立重复试验与二项分布01
    2021届高考数学人教版一轮创新教学案:第10章第8讲 n次独立重复试验与二项分布02
    2021届高考数学人教版一轮创新教学案:第10章第8讲 n次独立重复试验与二项分布03
    还剩18页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021届高考数学人教版一轮创新教学案:第10章第8讲 n次独立重复试验与二项分布

    展开
    
    第8讲 n次独立重复试验与二项分布

    [考纲解读] 1.了解条件概率与两个事件相互独立的概念.(重点)
    2.能够利用n次独立试验的模型及二项分布解决一些简单的实际问题.(难点)
    [考向预测] 从近三年高考情况来看,本讲是高考中的一个热点.预测2021年将会考查:①条件概率的计算;②事件独立性的应用;③独立重复试验与二项分布的应用.题型为解答题,试题难度不会太大,属中档题型.

    1.条件概率及其性质
    (1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为P(B|A)=(P(A)>0).在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=(n(AB)表示AB共同发生的基本事件的个数).
    (2)条件概率具有的性质
    ①0≤P(B|A)≤1;
    ②如果B和C是两个互斥事件,
    则P((B∪C)|A)=P(B|A)+P(C|A).
    2.相互独立事件
    (1)对于事件A,B,若A的发生与B的发生互不影响,则称A,B是相互独立事件.
    (2)若A与B相互独立,则P(B|A)=P(B),
    P(AB)=P(B|A)P(A)=P(A)P(B).
    (3)若A与B相互独立,则A与,与B,与也都相互独立.
    (4)若P(AB)=P(A)P(B),则A与B相互独立.
    3.独立重复试验与二项分布
    (1)独立重复试验
    在相同条件下重复做的n次试验称为n次独立重复试验.Ai(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…An)=P(A1)P(A2)…P(An).
    (2)二项分布
    在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率是p,此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n).
                        
    1.概念辨析
    (1)相互独立事件就是互斥事件.(  )
    (2)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.(  )
    (3)二项分布是一个概率分布,其公式相当于(a+b)n二项展开式的通项公式,其中a=p,b=(1-p).(  )
    (4)二项分布是一个概率分布列,是一个用公式P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n表示的概率分布列,它表示了n次独立重复试验中事件A发生的次数的概率分布.(  )
    答案 (1)× (2)× (3)× (4)√
    2.小题热身
    (1)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)和P(B|A)分别为(  )
    A., B.,
    C., D.,
    答案 C
    解析 由已知,得P(A|B)===,
    P(B|A)===.
    (2)设随机变量ξ~B,则P(ξ=3)=(  )
    A. B.
    C. D.
    答案 C
    解析 因为ξ~B,所以P(ξ=3)=C3·2=.
    (3)一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________.
    答案 0.88
    解析 P=1-0.4×0.3=0.88.
    (4)小王通过英语听力测试的概率是,他连续测试3次,那么其中恰有1次获得通过的概率是________.
    答案 
    解析 所求概率P=C·1·2=.

    题型 一 条件概率                     
                        
    1.从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)=(  )
    A. B.
    C. D.
    答案 B
    解析 解法一:事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个.
    事件AB发生的结果只有(2,4)一种情形,即n(AB)=1.
    故由古典概型概率P(B|A)==.故选B.
    解法二:P(A)==,P(AB)==.由条件概率计算公式,得P(B|A)===.故选B.
    条件探究1 若将本例中的事件B改为“取到的2个数均为奇数”,则P(B|A)=________.
    答案 
    解析 P(A)==,P(B)==.
    又B⊆A,则P(AB)=P(B)=,
    所以P(B|A)===.
    条件探究2 将本例中的条件改为:从1,2,3,4,5中不放回地依次取2个数,事件A为“第一次取到的是奇数”,事件B为“第二次取到的是奇数”,则P(B|A)=________.
    答案 
    解析 从1,2,3,4,5中不放回地依次取2个数,有A种方法;其中第一次取到的是奇数,有AA种方法;第一次取到的是奇数且第二次取到的是奇数,有AA种方法.
    则P(A)==,P(AB)==,
    所以P(B|A)===.

    2.如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则P(B|A)=________.
    答案 
    解析 由题意可得,事件A发生的概率P(A)=
    ==.事件AB表示“豆子落在△EOH内”,则P(AB)===,
    故P(B|A)===.

    解决条件概率问题的步骤
    第一步,判断是否为条件概率,若题目中出现“已知”“在……前提下”等字眼,一般为条件概率.题目中若没有出现上述字眼,但已知事件的出现影响所求事件的概率时,也需注意是否为条件概率.若为条件概率,则进行第二步.
    第二步,计算概率,这里有两种思路:
    思路一
    缩减样本空间法计算条件概率,如求P(A|B),可分别求出事件B,AB包含的基本事件的个数,再利用公式P(A|B)=计算
    思路二
    直接利用公式计算条件概率,即先分别计算出P(AB),P(B),再利用公式P(A|B)=计算

    提醒:要注意P(B|A)与P(A|B)的不同:前者是在A发生的条件下B发生的概率,后者是在B发生的条件下A发生的概率.
                        


    1.(2019·汉中模拟)甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传这四个项目,每人限报其中一项,记事件A为“四名同学所报项目各不相同”,事件B为“只有甲同学一人报关怀老人项目”,则P(A|B)=(  )
    A. B.
    C. D.
    答案 C
    解析 由题意,得P(B)==,P(AB)==,所以P(A|B)==.
    2.(2019·武侯区校级模拟)如果{an}不是等差数列,但若∃k∈N*,使得ak+ak+2=2ak+1,那么称{an}为“局部等差”数列.已知数列{xn}的项数为4,记事件A:集合{x1,x2,x3,x4}⊆{1,2,3,4,5},事件B:{xn}为“局部等差”数列,则条件概率P(B|A)=(  )
    A. B.
    C. D.
    答案 C
    解析 由已知数列{xn}的项数为4,记事件A:集合{x1,x2,x3,x4}⊆{1,2,3,4,5},则事件A的基本事件共有A=120个,在满足事件A的条件下,事件B:{xn}为“局部等差”数列,共有以下24个基本事件:其中含1,2,3的局部等差数列分别为1,2,3,5;5,1,2,3;4,1,2,3,共3个,同理含3,2,1的局部等差数列也有3个,含3,4,5和含5,4,3与上述相同,含2,3,4的有5,2,3,4;2,3,4,1,共2个,同理含4,3,2的也有2个.含1,3,5的有1,3,5,2;2,1,3,5;4,1,3,5;1,3,5,4,共4个,同理含5,3,1的也有4个.所以P(B|A)==.



    题型 二 相互独立事件的概率                    

    1.(2019·咸阳二模)已知甲、乙、丙三人去参加某公司面试,他们被公司录取的概率分别为,,,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为(  )
    A. B.
    C. D.
    答案 B
    解析 由题意,得他们三人中至少有一人被录取的对立事件是三个人都没有被录取,∴他们三人中至少有一人被录取的概率为P=1-=.
    2.(2019·全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.
    (1)求P(X=2);
    (2)求事件“X=4且甲获胜”的概率.
    解 (1)X=2就是某局双方10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.
    因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.
    (2)X=4且甲获胜,就是某局双方10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为前两球是甲、乙各得1分,后两球均为甲得分.
    因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.



    求相互独立事件概率的步骤
    第一步,先用字母表示出事件,再分析题中涉及的事件,并把题中涉及的事件分为若干个彼此互斥的事件的和;
    第二步,求出这些彼此互斥的事件的概率;
    第三步,根据互斥事件的概率计算公式求出结果.
    此外,也可以从对立事件入手计算概率.

    1.(2019·湘潭三模)某校在秋季运动会中,安排了篮球投篮比赛,现有20名同学参加篮球投篮比赛,已知每名同学投进的概率均为0.4;每名同学有2次投篮机会,且各同学投篮之间没有影响;现规定:投进2个得4分,投进1个得2分,1个未进得0分,则其中1名同学得2分的概率为(  )
    A.0.5 B.0.48
    C.0.4 D.0.32
    答案 B
    解析 设“第一次投进球”为事件A,“第二次投进球”为事件B,则得2分的概率为P=P(A)+P(B)=0.4×0.6+0.6×0.4=0.48.
    2.某社区举办《“环保我参与”有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是,甲、丙两个家庭都回答错误的概率是,乙、丙两个家庭都回答正确的概率是.若各家庭回答是否正确互不影响.
    (1)求乙、丙两个家庭各自回答正确这道题的概率;
    (2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.
    解 (1)记“甲回答正确这道题”“乙回答正确这道题”“丙回答正确这道题”分别为事件A,B,C,
    则P(A)=,
    且有

    所以P(B)=,P(C)=.
    (2)有0个家庭回答正确的概率为
    P0=P()=P()·P()·P()=××=,
    有1个家庭回答正确的概率为
    P1=P(A+B+C)=××+××+××=,
    所以不少于2个家庭回答正确这道题的概率为
    P=1-P0-P1=1--=.
    题型 三 独立重复试验与二项分布                    

    1.若同时抛掷两枚骰子,当至少有5点或6点出现时,就说这次试验成功,则在3次试验中至少有1次成功的概率是(  )
    A. B.
    C. D.
    答案 C
    解析 一次试验中,至少有5点或6点出现的概率为1-×=1-=,设X为3次试验中成功的次数,所以X~B,故所求概率P(X≥1)=1-P(X=0)=1-C×0×3=,故选C.
    2.为了弘扬国粹,提高民族自豪感,坐落于某实验中学内的艺术馆为学员们提供书法、国画、古琴、茶艺等教学服务,其中学习书法和国画的学员最多.为了研究喜欢书法和喜欢国画之间的联系,随机抽取了80名学员进行问卷调查,发现喜欢国画的人的比例为70%,喜欢书法的人的比例为50%.

    喜欢国画
    不喜欢国画
    总计
    喜欢书法
    a
    b

    不喜欢书法
    c
    16

    总计



    (1)请求出上表中a,b,c的值;
    (2)有人认为喜欢书法与喜欢国画有关,你同意这种看法吗?说明理由;
    (3)假定学员们都按照自己的喜好进行了系统学习.根据传统,国画上有题字和落款才算完整作品,那么既学书法又学国画的学员们创作的作品可以称为“书画兼优”.为了配合实验中学七十年校庆,打算随机挑选5幅作品展览.设其中“书画兼优”的作品数为X,求X的分布列.
    参考公式:K2=,其中n=a+b+c+d.
    参考数据:

    P(K2≥k0)
    0.15
    0.10
    0.05
    0.25
    0.010
    k0
    2.072
    2.706
    3.841
    5.024
    6.635

    解 (1)由题意,得c+16=80×(1-50%),∴c=24.
    ∵a+c=80×70%,∴a=32.
    ∵a+b=80×50%,∴b=8.
    ∴a=32,b=8,c=24.
    (2)我同意这种看法.理由如下:
    K2=≈3.81.
    ∵3.81>2.706,
    ∴有90%以上的把握认为喜欢书法与喜欢国画有关,
    ∴我同意这种看法.
    (3)由(1)知一幅作品“书画兼优”的概率为=.
    X的所有可能取值为0,1,2,3,4,5.
    P(X=0)=C05=,
    P(X=1)=C··4=,
    P(X=2)=C23=,
    P(X=3)=C32=,
    P(X=4)=C4·=,
    P(X=5)=C50=.
    ∴X的分布列如下.

    X
    0
    1
    2
    3
    4
    5
    P








    1.独立重复试验的实质及应用
    独立重复试验的实质是相互独立事件的特例,应用独立重复试验公式可以简化求概率的过程.
    2.判断某概率模型是否服从二项分布Pn(X=k)=Cpk(1-p)n-k的三个条件
    (1)在一次试验中某事件A发生的概率是一个常数p.
    (2)n次试验不仅是在完全相同的情况下进行的重复试验,而且每次试验的结果是相互独立的.
    (3)该公式表示n次试验中事件A恰好发生了k次的概率.
    提醒:在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为独立重复试验,进而判定是否服从二项分布.

    1.春节期间,某旅游景区推出掷圆圈套玩具鹅的游戏,吸引了一大批的游客参加,规则是:每人花10元拿到5个圆圈,在离最近的玩具鹅的2米处掷圆圈5次,只要圆圈连续套住同一只鹅颈3次,就可以获得套住的那只玩具鹅.假设某游客每次掷圆圈套住鹅颈的概率为,且每次掷圆圈的结果互不影响,则该游客获得一只玩具鹅的概率为(  )
    A. B.
    C. D.
    答案 D
    解析 设“第i次套住鹅颈”为事件Ai(i=1,2,3,4,5),则i表示“第i次未套住鹅颈”,依题意可得该游客能获得一只玩具鹅的3种情形:A1A2A3,1A2A3A4,12A3A4A5,
    而P(A1A2A3)=3=,
    P(1A2A3A4)=3×=,
    P(12A3A4A5)=3×2=,
    故该游客获得一只玩具鹅的概率为++=,故选D.
    2.医学上某种还没有完全攻克的疾病,治疗时需要通过药物控制其中的两项指标H和V.现有A,B,C三种不同配方的药剂,根据分析,A,B,C三种药剂能控制H指标的概率分别为0.5,0.6,0.75,能控制V指标的概率分别为0.6,0.5,0.4,能否控制H指标与能否控制V指标之间相互没有影响.
    (1)求A,B,C三种药剂中恰有一种能控制H指标的概率;
    (2)某种药剂能使两项指标H和V都得到控制就说该药剂有治疗效果.求三种药剂中有治疗效果的药剂种数X的分布列.
    解 (1)A,B,C三种药剂中恰有一种能控制H指标的概率为P=P(A)+P(B)+P(C)
    =0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.
    (2)∵A有治疗效果的概率为PA=0.5×0.6=0.3,
    B有治疗效果的概率为PB=0.6×0.5=0.3,
    C有治疗效果的概率为PC=0.75×0.4=0.3,
    ∴A,B,C三种药剂有治疗效果的概率均为0.3,可看成3次独立重复试验,
    即X~B(3,0.3).
    ∵X的可能取值为0,1,2,3,
    ∴P(X=k)=C×0.3k×(1-0.3)3-k,
    即P(X=0) =C×0.30×(1-0.3)3=0.343,
    P(X=1)=C×0.3×(1-0.3)2=0.441,
    P(X=2)=C×0.32×(1-0.3)=0.189,
    P(X=3)=C×0.33=0.027.
    故X的分布列如下.
    X
    0
    1
    2
    3
    P
    0.343
    0.441
    0.189
    0.027
                        
     组 基础关
    1.从甲口袋内摸出1个白球的概率是,从乙口袋内摸出1个白球的概率是,如果从两个口袋内各摸出一个球,那么是(  )
    A.2个球不都是白球的概率
    B.2个球都不是白球的概率
    C.2个球都是白球的概率
    D.2个球恰好有一个球是白球的概率
    答案 A
    解析 ∵2个球不都是白球的对立事件是2个球都是白球,从甲口袋摸出白球和从乙口袋摸出白球两者是相互独立的,∴2个球都是白球的概率P=×=,∴2个球不都是白球的概率是1-=.故选A.
    2.(2019·广西三市第一次联考)某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:
    使用时
    间/天
    10~20
    21~30
    31~40
    41~50
    51~60
    个数
    10
    40
    80
    50
    20
    若以频率估计概率,现从该批次机械元件中随机抽取3个,则至少有2个元件的使用寿命在30天以上的概率为(  )
    A. B.
    C. D.
    答案 D
    解析 由表可知元件使用寿命在30天以上的频率为=,则所求概率为C2×+3=.
    3.位于坐标原点的一个质点M按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是,质点M移动五次后位于点(2,3)的概率是(  )
    A.5 B.C×5
    C.C×3 D.C×C×5
    答案 B

    解析 如图,由题可知质点M必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次重复试验中向右恰好发生2次的概率.所求概率为P=C×2×3=C×5.故选B.
    4.某居民小区有两个相互独立的安全防范系统A和B,系统A和系统B在任意时刻发生故障的概率分别为和p,若在任意时刻恰有一个系统不发生故障的概率为,则p等于(  )
    A. B.
    C. D.
    答案 B
    解析 由题意得,(1-p)+p=,
    ∴p=.
    5.(2019·成都调研)某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知信息的概率为(  )
    A. B.
    C. D.
    答案 C
    解析 设A表示“甲同学收到李老师所发活动通知信息”,B表示“甲同学收到张老师所发活动通知信息”,由题意P(A)==,P(B)==,∴甲同学收到李老师或张老师所发活动通知信息的概率为+-×=.故选C.
    6.投掷一枚图钉,设钉尖向上的概率为p,连续掷一枚图钉3次,若出现2次钉尖向上的概率小于出现3次钉尖向上的概率,则p的取值范围为(  )
    A. B.
    C. D.
    答案 B
    解析 ∵投掷一枚图钉,钉尖向上的概率为p(0
    ∴p的取值范围为.
    7.(2019·重庆模拟)某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为(  )
    A. B.
    C. D.
    答案 A
    解析 设事件A为“学生甲不是第一个出场,学生乙不是最后一个出场”;事件B为“学生丙第一个出场,”则P(A)==,P(AB)==,则P(B|A)===.
    8.(2019·武昌区模拟)抛掷一枚质地均匀的骰子两次,记A={两次的点数均为奇数},B={两次的点数之和为4},则P(B|A)=________.
    答案 
    解析 根据题意,抛掷一枚质地均匀的骰子两次,有6×6=36种情况,记A={两次的点数均为奇数},B={两次的点数之和为4},事件A包含3×3=9种情况,事件AB有2种情况,则P(A)==,P(AB)=,则P(B|A)==.
    9.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠,若该电梯在底层有5位乘客,且每位乘客在这三层的每一层下电梯的概率为,用ξ表示5位乘客在第20层下电梯的人数,则P(ξ=4)=________.
    答案 
    解析 依题意,ξ~B,故P(ξ=4)=C4×1=.
    10.(2019·全国卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.
    答案 0.18
    解析 甲队以4∶1获胜,甲队在第5场(主场)获胜,前4场中有一场输.
    若在主场输一场,则概率为2×0.6×0.4×0.5×0.5×0.6;
    若在客场输一场,则概率为2×0.6×0.6×0.5×0.5×0.6.
    ∴甲队以4∶1获胜的概率P=2×0.6×0.5×0.5×(0.6+0.4)×0.6=0.18.
     组 能力关
    1.(2019·广州市高三调研)已知甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球.现随机地从甲袋中取出1个球放入乙袋中,再从乙袋中随机取出1个球,则从乙袋中取出的球是红球的概率为(  )
    A. B.
    C. D.
    答案 B
    解析 分两类:①若从甲袋中取出黄球,则乙袋中有3个黄球和2个红球,从乙袋中取出的球是红球的概率为;②若从甲袋中取出红球,则乙袋中有2个黄球和3个红球,从乙袋中取出的球是红球的概率为;∴所求概率P=×=.故选B.
    2.(2020·安阳摸底)为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球也投进的概率为,若他前一球投不进则后一球投进的概率为.若他第1球投进的概率为,则他第2球投进的概率为(  )
    A. B.
    C. D.
    答案 B
    解析 设该运动员第2球投进的概率为p2,第1球投进的概率为p1=,∴p2=p1+(1-p1)=p1+=×+=.故选B.
    3.(2019·德州一模)某超市在中秋节期间举行有奖销售活动,凡消费金额满200元的顾客均获得一次抽奖的机会,中奖一次即可获得5元红包,没有中奖不得红包.现有4名顾客均获得一次抽奖机会,且每名顾客每次中奖的概率均为0.4,记X为4名顾客获得的红包金额总和,则P(10≤X≤15)=________.
    答案 
    解析 中奖一次即可获得5元红包,没有中奖不得红包.现有4名顾客均获得一次抽奖机会,且每名顾客每次中奖的概率均为0.4,记X为4名顾客获得的红包金额总和,则P(10≤X≤15)=C×0.42×0.62+C×0.43×0.6=.
    4.为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100 km/h的有40人,不超过100 km/h的有15人;在45名女性驾驶员中,平均车速超过100 km/h的有20人,不超过100 km/h的有25人.
    (1)在被调查的驾驶员中,从平均车速不超过100 km/h的人中随机抽取2人,求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;
    (2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100 km/h且为男性驾驶员的车辆为X,求X的分布列.
    解 (1)平均车速不超过100 km/h的驾驶员有40人,从中随机抽取2人的方法总数为C,记“这2人恰好有1名男性驾驶员和1名女性驾驶员”为事件A,则事件A所包含的基本事件数为CC,所以所求的概率P(A)===.
    (2)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100 km/h且为男性驾驶员的概率为
    =,
    故X~B.
    所以P(X=0)=C03=,
    P(X=1)=C2=,
    P(X=2)=C2=,
    P(X=3)=C30=.
    所以X的分布列如下.
    X
    0
    1
    2
    3
    P





     组 素养关
    1.(2019·安徽六校教育研究会第二次联考)为调查人们在购物时的支付习惯,某超市对随机抽取的600名顾客的支付方式进行了统计,统计数据如表所示,
    支付方式
    微信
    支付宝
    购物卡
    现金
    人数
    200
    150
    150
    100
    现有甲、乙、丙三人将进入该超市购物,各人支付方式相互独立,假设以频率近似代替概率.
    (1)求三人中使用微信支付的人数多于现金支付的人数的概率.
    (2)记X为三人中使用支付宝支付的人数,求X的分布列.
    解 (1)由表格得顾客使用微信、支付宝、购物卡和现金支付的概率分别为,,,.
    设Y为三人中使用微信支付的人数,Z为使用现金支付的人数,
    事件A为“三人中使用微信支付的人数多于现金支付的人数”,
    则P(A)=P(Y=3)+P(Y=2)+P(Y=1,且Z=0)=3+C2×+C×2=++=.
    (2)由题意可知X~B,故所求分布列如下.
    X
    0
    1
    2
    3
    P





    2.(2019·顺德一模)某市市民用水拟实行阶梯水价,每人月用水量不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列.

    (1)求a,b,c的值及居民月用水量在2~2.5内的频数;
    (2)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应将w至少定为多少?(w取整数)
    (3)若将频率视为概率,现从该市随机调查3名居民的月用水量,将月用水量不超过2.5立方米的人数记为X,求其分布列.
    解 (1)∵前四组频数成等差数列,∴所对应的也成等差数列,
    设a=0.2+d,b=0.2+2d,c=0.2+3d,
    ∴0.5×(0.2+0.2+d+0.2+2d+0.2+3d+0.2+d+0.1+0.1+0.1)=1,
    解得d=0.1,∴a=0.3,b=0.4,c=0.5.
    居民月用水量在2~2.5内的频率为0.5×0.5=0.25.
    居民月用水量在2~2.5内的频数为0.25×10000=2500.
    (2)由题图及(1)可知,居民月用水量小于2的频率为(0.2+0.3+0.4)×0.5=0.45,小于3的频率为0.45+(0.5+0.3)×0.5=0.85,
    ∴为使80%以上居民月用水价格为4元/立方米,
    应将w至少定为3.
    (3)将频率视为概率,设A(单位:立方米)代表居民月用水量,
    可知P(A≤2.5)=0.7,
    由题意,X~B(3,0.7),
    P(X=0)=C×0.33=0.027,
    P(X=1)=C×0.32×0.7=0.189,
    P(X=2)=C×0.3×0.72=0.441,
    P(X=3)=C×0.73=0.343.
    ∴X的分布列如下.
    X
    0
    1
    2
    3
    P
    0.027
    0.189
    0.441
    0.343


    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021届高考数学人教版一轮创新教学案:第10章第8讲 n次独立重复试验与二项分布
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map