|学案下载
搜索
    上传资料 赚现金
    2021届高考数学人教版一轮创新教学案:第10章第7讲 离散型随机变量及其分布列
    立即下载
    加入资料篮
    2021届高考数学人教版一轮创新教学案:第10章第7讲 离散型随机变量及其分布列01
    2021届高考数学人教版一轮创新教学案:第10章第7讲 离散型随机变量及其分布列02
    2021届高考数学人教版一轮创新教学案:第10章第7讲 离散型随机变量及其分布列03
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021届高考数学人教版一轮创新教学案:第10章第7讲 离散型随机变量及其分布列

    展开
    
    第7讲 离散型随机变量及其分布列
    [考纲解读] 1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.
    2.能确定随机变量,求出随机变量发生的概率,正确列出分布列.(重点、难点)
    3.理解超几何分布,并能进行简单的应用.
    [考向预测] 从近三年高考情况来看,本讲一直是高考中的热点内容.预测2021年将会考查:①与排列组合及统计知识结合的分布列;②与独立重复事件结合的分布列.试题以解答题的形式呈现,以现实生活中的事例为背景进行考查,试题难度不大,属中档题型.

    1.离散型随机变量
    随着试验结果变化而变化的变量称为随机变量,常用字母X,Y,ξ,η,…表示.所有取值可以一一列出的随机变量,称为离散型随机变量.
    2.离散型随机变量的分布列及性质
    (1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则表
    X
    x1
    x2

    xi

    xn
    P
    p1
    p2

    pi

    pn
    称为离散型随机变量X的概率分布列,简称为X的分布列,有时为了表达简单,也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
    (2)离散型随机变量的分布列的性质
    ①pi≥0(i=1,2,…,n);
    ②i=1.
    3.常见离散型随机变量的分布列
    (1)两点分布
    若随机变量X服从两点分布,即其分布列为
    X
    0
    1
    P
    1-p
    p
    ,其中p=P(X=1)称为成功概率.
    (2)超几何分布
    在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.
    X
    0
    1

    m
    P




    如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.

    1.概念辨析
    (1)抛掷均匀硬币一次,出现正面的次数是随机变量.(  )
    (2)离散型随机变量的各个可能值表示的事件是彼此互斥的.(  )
    (3)从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.(  )
    (4)若随机变量X的分布列由下表给出,
    X
    2
    5
    P
    0.3
    0.7
    则它服从两点分布.(  )
    答案 (1)√ (2)√ (3)√ (4)×
    2.小题热身
    (1)已知8件产品中有2件次品,从中任取3件,取到次品的件数为随机变量ξ,那么ξ的可能取值为(  )
    A.0,1 B.1,2
    C.0,1,2 D.0,1,2,3
    答案 C
    解析 由于只有2件次品,所以ξ的可能取值为0,1,2.
    (2)设随机变量X的分布列如下.
    X
    1
    2
    3
    4
    5
    P




    p
    则p为(  )
    A. B.
    C. D.
    答案 C
    解析 由分布列的性质得,++++p=1,
    解得p=.
    (3)设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)等于(  )
    A.0 B.
    C. D.
    答案 C
    解析 P(X=1)=2P(X=0),且P(X=1)+P(X=0)=1.所以P(X=0)=.故选C.
    (4)从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率是________.
    答案 
    解析 设所选女生人数为x,则x服从超几何分布,
    其中N=6,M=2,n=3,则P(x≤1)=P(x=0)+P(x=1)=+=.

    题型一 离散型随机变量分布列的性质 

    1.(2019·乐山三模)设随机变量X的概率分布表如表,
    X
    1
    2
    3
    4
    P


    m

    则P(|X-2|=1)=(  )
    A. B.
    C. D.
    答案 C
    解析 由|X-2|=1,可解得x=3或x=1,再由分布列的性质可得m=1-++=,∴P(|X-2|=1)=P(X=1)+P(X=3)=+=.
    2.设随机变量ξ的分布列P=ak(k=1,2,3,4,5).
    (1)求常数a的值;
    (2)求P;
    (3)求P.
    解 由已知分布列如下.
    ξ





    P
    a
    2a
    3a
    4a
    5a
    (1)由a+2a+3a+4a+5a=1,得a=.
    (2)P=P+P+P(ξ=1)=++=.

    (3)因为<ξ<只有ξ=,,满足,
    故P
    =P+P+P
    =++=.
    结论探究 在本例中的条件下,求5ξ-1的分布列.
    解 由举例说明解析得ξ的分布列如下.
    ξ





    P





    所以5ξ-1的分布列如下.
    5ξ-1
    0
    1
    2
    3
    4
    P






    1.分布列性质的两个作用
    (1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性.
    (2)随机变量X所取的值分别对应的事件是两两互斥的,利用这一点可以求随机变量在某个范围内的概率.
    提醒:求分布列中的参数值时,要保证每个概率值均为非负数.
    2.随机变量X的线性组合的概率及分布列问题
    (1)随机变量X的线性组合η=aX+b(a,b∈R)是随机变量.
    (2)求η=aX+b的分布列可先求出相应随机变量的值,再根据对应的概率写出分布列.

    1.设X是一个离散型随机变量,其分布列如下.
    X
    -1
    0
    1
    P

    2-3q
    q2
    则q的值为(  )
    A.1 B.±
    C.- D.+
    答案 C
    解析 由分布列的性质知
    解得q=-.
    2.(2019·曲靖二模)已知随机变量ξ的分布列如下.
    ξ
    -2
    -1
    0
    1
    2
    3
    P






    若P(ξ2 A.4 C.x<4或x≥9 D.x≤4或x>9
    答案 A
    解析 由随机变量ξ的分布列,得
    ξ2的可能取值为0,1,4,9,
    且P(ξ2=0)=,P(ξ2=1)=+=,
    P(ξ2=4)=+=,P(ξ2=9)=,
    由P(ξ2 题型二 求离散型随机变量的分布列

    (2019·长春模拟)长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行了统计:
    点击量
    [0,1000]
    (1000,3000]
    (3000,+∞)
    节数
    6
    18
    12
    (1)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数;
    (2)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(1)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X的分布列.
    解 (1)根据分层抽样可知,选出的6节课中点击量超过3000的节数为×6=2.
    (2)由分层抽样可知,(1)中选出的6节课中点击量在区间[0,1000]内的有1节,点击量在区间(1000,3000]内的有3节,故X的可能取值为0,20,40,60.
    P(X=0)==,
    P(X=20)===,
    P(X=40)===,
    P(X=60)===,
    则X的分布列如下.
    X
    0
    20
    40
    60
    P





    离散型随机变量分布列的求解步骤
    (1)明确取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义.
    (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率.
    (3)画表格:按规范要求形式写出分布列.
    (4)做检验:利用分布列的性质检验分布列是否正确.
    提醒:求随机变量某一范围内取值的概率,要注意它在这个范围内的概率等于这个范围内各概率值的和.

    抛掷一枚质地均匀的硬币3次.
    (1)写出正面向上次数X的分布列;
    (2)求至少出现两次正面向上的概率.
    解 (1)X的可能取值为0,1,2,3.
    P(X=0)==;P(X=1)==;
    P(X=2)==;P(X=3)==.
    所以X的分布列如下.
    X
    0
    1
    2
    3
    P




    (2)至少出现两次正面向上的概率为
    P(X≥2)=P(X=2)+P(X=3)=+=.
    题型三 超几何分布

    2019年8月的台风“利奇马”对我国多个省市的财产造成了重大损害,据统计直接经济损失达537.2亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的损失数据分成5组:[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000](单位:元),得到如图所示的频率分布直方图.

    (1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);
    (2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户中损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为X,求X的分布列.
    解 (1)记每个农户的平均损失为元,则
    =(1000×0.00015+3000×0.00020+5000×0.00009+7000×0.00003+9000×0.00003)×2000=3360.
    (2)由频率分布直方图,得损失超过4000元的农户共有(0.00009+0.00003+0.00003)×2000×50=15(户),
    损失超过8000元的农户共有0.00003×2000×50=3(户),
    随机抽取2户,则X的可能取值为0,1,2;
    计算P(X=0)==,
    P(X=1)==,
    P(X=2)==,
    所以X的分布列如下.
    X
    0
    1
    2
    P




    1.超几何分布的两个特点
    (1)超几何分布是不放回抽样问题.
    (2)随机变量为抽到的某类个体的个数.
    2.超几何分布的应用条件
    (1)考察对象分两类.
    (2)已知各类对象的个数.
    (3)从中抽取若干个个体,考察某类个体个数ξ的概率分布.
    3.求超几何分布的分布列的步骤


    已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
    (1)应从甲、乙、丙三个部门的员工中分别抽取多少人?
    (2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.
    ①用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列;
    ②设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.
    解 (1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,
    由于采用分层抽样的方法从中抽取7人,
    因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.
    (2)①随机变量X的所有可能取值为0,1,2,3.
    P(X=k)=(k=0,1,2,3).
    所以,随机变量X的分布列如下.
    X
    0
    1
    2
    3
    P




    ②设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,
    则A=B∪C,且B与C互斥,
    由①知,P(B)=P(X=2),P(C)=P(X=1),
    故P(A)=P(B∪C)=P(X=2)+P(X=1)=.
    所以,事件A发生的概率为.

     组 基础关
    1.抛掷两颗骰子,所得点数之和为ξ,那么“ξ=4”表示的随机试验结果是(  )
    A.一颗是3点,另一颗是1点
    B.两颗都是2点
    C.两颗都是4点
    D.一颗是3点,另一颗是1点或两颗都是2点
    答案 D
    解析 A,B中表示的随机试验的结果,随机变量均取值4;而D是ξ=4代表的所有试验结果.故选D.
    2.设离散型随机变量ξ的分布列如下.
    ξ
    0
    1
    2
    3
    4
    P





    则|ξ-1|的分布列为(  )
    A.
    |ξ-1|
    1
    2
    3
    P



    B.
    |ξ-1|
    1
    2
    3
    P



    C.
    |ξ-1|
    0
    1
    2
    3
    P




    D.
    |ξ-1|
    0
    1
    2
    3
    P




    答案 D
    解析 由已知得,|ξ-1|的所有可能取值为0,1,2,3.
    P(|ξ-1|=0)=P(ξ=1)=,P(|ξ-1|=1)=P(ξ=0)+P(ξ=2)=,P(|ξ-1|=2)=P(ξ=3)=,
    P(|ξ-1|=3)=P(ξ=4)=.
    所以|ξ-1|的分布列为D.
    3.某一随机变量ξ的概率分布如下,且m+2n=1.2,则m-=(  )
    ξ
    0
    1
    2
    3
    p
    0.1
    m
    n
    0.1
    A.-0.2 B.0.2
    C.0.1 D.-0.1
    答案 B
    解析 由m+n+0.2=1,m+2n=1.2,可得m=n=0.4,所以m-=0.2.故选B.
    4.设随机变量ξ的分布列为P(ξ=i)=a·i,i=1,2,3,则a=(  )
    A.1 B.
    C. D.
    答案 D
    解析 P(ξ=1)+P(ξ=2)+P(ξ=3)=1,即a[+()2+()3]=1,解得a=.故选D.
    5.一个盒子里装有大小相同的10个黑球、12个红球、4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于的是(  )
    A.P(0<X≤2) B.P(X≤1)
    C.P(X=1) D.P(X=2)
    答案 B
    解析 由题意可知,P(X=1)=,P(X=0)=,表示取1个白球或者一个白球都没有取得,即P(X≤1).
    6.若随机变量X的分布列如下,
    X
    -2
    -1
    0
    1
    2
    3
    P
    0.1
    0.2
    0.2
    0.3
    0.1
    0.1
    则当P(X A.(-∞,2] B.[1,2]
    C.(1,2] D.(1,2)
    答案 C
    解析 由随机变量X的分布列,知P(X<-1)=0.1,P(X<0)=0.3,P(X<1)=0.5,P(X<2)=0.8,则当P(X 7.离散型随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P( A. B.
    C. D.
    答案 D
    解析 由(+++)×a=1,得a=1,解得a=.故P( 8.一盒中有12个乒乓球,其中9个新的,3个旧的(至少使用过一次),从盒子中任取3个球来用,用完即为旧的,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为________.
    答案 
    解析 由题意,得X=4是指取出的3个球中有2个旧的1个新的,所以P(X=4)==.
    9.从含有2个红球和4个黑球的盒子中任意摸出4个球,假设每个球被摸到的可能性相同,记摸出的4个球中黑球数与红球数的差的绝对值为ξ,则ξ的分布列为________.
    答案 
    ξ
    0
    2
    4
    P



    解析 由题意,得ξ的可能取值为0,2,4,则
    P(ξ=0)==,P(ξ=2)==,
    P(ξ=4)==,所以ξ的分布列如下.
    ξ
    0
    2
    4
    P



    10.一个均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字2.将这个小正方体抛掷2次,则向上的数之积X的分布列为________.
    答案 
    X
    0
    1
    2
    4
    P




    解析 随机变量X的可能取值为0,1,2,4,P(X=0)==,P(X=1)==,P(X=2)==,P(X=4)==,所以分布列为
    X
    0
    1
    2
    4
    P




     组 能力关
    1.(2020·长沙质检)一个不透明的袋内装有m个白球,n-m个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X个白球,下列概率等于的是(  )
    A.P(X=3) B.P(X≥2)
    C.P(X≤3) D.P(X=2)
    答案 D
    解析 当X=2时,即前2个取出的是白球,第3个是黑球,前2个取出白球,有A种取法,再任意取出1个黑球即可,有C种取法,而这3次取球可以认为按顺序排列,此排列顺序即可认为是依次取球的顺序,即A,P(X=2)==.
    2.(2019·西安质检)已知随机变量ξ的分布列如下,
    ξ
    0
    1
    2
    P
    a
    b
    c
    其中a,b,c成等差数列,则函数f(x)=x2+2x+ξ有且只有一个零点的概率为(  )
    A. B.
    C. D.
    答案 B
    解析 由题意,知a,b,c∈[0,1],且解得b=,又函数f(x)=x2+2x+ξ有且只有一个零点,故对于方程x2+2x+ξ=0,Δ=4-4ξ=0,解得ξ=1,所以P(ξ=1)=.
    3.已知某一离散型随机变量X的分布列如下,
    X
    0
    1
    2
    3
    P
    0.1
    m
    4n
    0.1
    则+的最小值为________.
    答案 
    解析 由题意,得m+4n+0.2=1,m>0,n>0.
    即m+4n=,(m+4n)=1.
    所以+=(m+4n)=≥(5+2)=,
    当且仅当=即m=2n,n=,m=时,“=”成立.
    4.若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).
    在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
    (1)写出所有个位数字是5的“三位递增数”;
    (2)若甲参加活动,求甲得分X的分布列.
    解 (1)个位数字是5的“三位递增数”有125,135,145,235,245,345.
    (2)由题意知,全部“三位递增数”的个数为C=84,随机变量X的取值为0,-1,1,因此P(X=0)==,
    P(X=-1)==,P(X=1)=1--=.
    所以X的分布列如下.
    X
    0
    -1
    1
    P



     组 素养关
    1.(2019·长春二模)某研究机构随机调查了A,B两个企业各100名员工,得到了A企业员工收入的频数分布表以及B企业员工收入的统计图如下.
    A企业:
    工资
    人数
    [2000,3000)
    5
    [3000,4000)
    10
    [4000,5000)
    20
    [5000,6000)
    42
    [6000,7000)
    18
    [7000,8000)
    3
    [8000,9000)
    1
    [9000,10000]
    1
    B企业:

    (1)若将频率视为概率,现从B企业中随机抽取一名员工,求该员工收入不低于5000元的概率;
    (2)①若从A企业收入在[2000,5000)的员工中,按分层抽样的方式抽取7人,而后在此7人中随机抽取2人,求这2人收入在[3000,4000)内的人数X的分布列;
    ②若你是一名即将就业的大学生,根据上述调查结果,并结合统计学相关知识,你会选择去哪个企业就业,并说明理由.
    解 (1)由饼状图知,工资不低于5000元的有68人,故从B企业中随机抽取一名员工,该员工收入不低于5000元的概率为0.68.
    (2)①A企业员工收入在[2000,3000),[3000,4000),[4000,5000)三个不同层次的人数比为1∶2∶4,即按照分层抽样的方式所抽取的7人收入在[3000,4000)的人数为2.X的可能取值为0,1,2,
    因此P(X=0)==,P(X=1)==,
    P(X=2)==,
    得X的分布列如下,
    X
    0
    1
    2
    P



    ②A企业的员工平均收入为×(2500×5+3500×10+4500×20+5500×42+6500×18+7500×3+8500×1+9500×1)=5260,
    B企业的员工平均收入为×(2500×2+3500×7+4500×23+5500×50+6500×16+7500×2)=5270.
    参考答案一:选B企业,由于B企业员工的平均收入高.
    参考答案二:选A企业,A企业员工的平均收入只比B企业低10元,但是A企业有高收入的团体,说明发展空间较大,获得8000元以上的高收入是有可能的.
    参考答案三:选B企业,由于B企业员工平均收入不仅高,且低收入人数少.
    (如有其他情况,只要理由充分,也可给分)
    2.某班级50名学生的考试分数x分布在区间[50,100)内,设考试分数x的分布频率是f(x)且f(x)=考试成绩采用“5分制”,规定:考试分数在[50,60)内的成绩记为1分,考试分数在[60,70)内的成绩记为2分,考试分数在[70,80)内的成绩记为3分,考试分数在[80,90)内的成绩记为4分,考试分数在[90,100)内的成绩记为5分.在50名学生中用分层抽样的方法,从成绩为1分、2分及3分的学生中随机抽出6人,再从这6人中随机抽出3人,记这3人的成绩之和为ξ(将频率视为概率).
    (1)求b的值,并估计该班的考试平均分数;
    (2)求P(ξ=7);
    (3)求随机变量ξ的分布列.
    解 (1)因为
    f(x)=
    所以++++=1,
    所以b=1.9.
    估计该班的考试平均分数为
    ×55+×65+×75+×85+×95=76.
    (2)由题意可知,考试成绩记为1分,2分,3分,4分,5分的频率分别是0.1,0.2,0.3,0.3,0.1,按分层抽样的方法分别从考试成绩记为1分,2分,3分的学生中抽出1人,2人,3人,再从这6人中抽出3人,所以P(ξ=7)==.
    (3)由题意,知ξ的可能取值为5,6,7,8,9,
    P(ξ=5)==,P(ξ=6)==,
    P(ξ=7)=,P(ξ=8)==,
    P(ξ=9)==.
    所以ξ的分布列如下.
    ξ
    5
    6
    7
    8
    9
    P







    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021届高考数学人教版一轮创新教学案:第10章第7讲 离散型随机变量及其分布列
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map