2020新课标高考数学二轮讲义:第二部分专题七第3讲 分类讨论、转化与化归思想
展开第3讲 分类讨论、转化与化归思想
一、分类讨论思想
分类讨论的原则 | 分类讨论的常见类型 |
1.不重不漏 2.标准要统一,层次要分明 3.能不分类的要尽量避免,决不无原则的讨论 | 1.由数学概念而引起的分类讨论 2.由数学运算要求而引起的分类讨论 3.由性质、定理、公式的限制而引起的分类讨论 4.由图形的不确定性而引起的分类讨论 5.由参数的变化而引起的分类讨论 |
分类与整合的思想是将一个较复杂的数学问题分解成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的策略 |
应用一 由概念、法则、公式引起的分类讨论
[典型例题]
设等比数列{an}的公比为q,前n项和Sn>0(n=1,2,3,…),则q的取值范围是________.
【解析】 由{an}是等比数列,Sn>0,可得a1=S1>0,q≠0,当q=1时,Sn=na1>0.
当q≠1时,Sn=>0,
即>0(n=1,2,3,…),
则有①或②
由①得-1<q<1,由②得q>1.
故q的取值范围是(-1,0)∪(0,+∞).
【答案】 (-1,0)∪(0,+∞)
本题易忽略对q=1的讨论,而直接由>0,得q的范围,这种解答是不完备的.本题根据等比数列前n项和公式的使用就要分q=1,Sn=na1和q≠1,Sn=进行讨论.
[对点训练]
1.一条直线过点(5,2),且在x轴,y轴上的截距相等,则这条直线的方程为( )
A.x+y-7=0
B.2x-5y=0
C.x+y-7=0或2x-5y=0
D.x+y+7=0或2y-5x=0
解析:选C.设该直线在x轴,y轴上的截距均为a,当a=0时,直线过原点,此时直线方程为y=x,即2x-5y=0;当a≠0时,设直线方程为+=1,则求得a=7,直线方程为x+y-7=0.
2.若函数f(x)=ax(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)在[0,+∞)上是增函数,则a=________.
解析:若a>1,则a2=4,a-1=m,故a=2,m=,此时g(x)=-,为减函数,不合题意;若0<a<1,则a-1=4,a2=m,故a=,m=,检验知符合题意,所以a=.
答案:
应用二 由参数变化引起的分类讨论
[典型例题]
已知f(x)=x-aex(a∈R,e为自然对数的底数).
(1)讨论函数f(x)的单调性;
(2)若f(x)≤e2x对x∈R恒成立,求实数a的取值范围.
【解】 (1)由题知,f′(x)=1-aex,
当a≤0时,f′(x)>0,函数f(x)是(-∞,+∞)上的单调递增函数;
当a>0时,由f′(x)=0得x=-ln a,
若x∈(-∞,-ln a),则f′(x)>0;
若x∈(-ln a,+∞),则f′(x)<0,
所以函数f(x)在(-∞,-ln a)上单调递增,在(-ln a,+∞)上单调递减.
(2)f(x)≤e2x⇔a≥-ex,
设g(x)=-ex,则g′(x)=.
当x<0时,1-e2x>0,g′(x)>0,
所以g(x)在(-∞,0)上单调递增.
当x>0时,1-e2x<0,g′(x)<0,
所以g(x)在(0,+∞)上单调递减.
所以g(x)max=g(0)=-1,所以a≥-1.
故a的取值范围是[-1,+∞).
(1)①参数的变化取值导致不同的结果,需对参数进行讨论,如含参数的方程、不等式、函数等.
②解析几何中直线点斜式、斜截式方程要考虑斜率k存在或不存在,涉及直线与圆锥曲线位置关系要进行讨论.
(2)分类讨论要标准明确、统一,层次分明,分类要做到“不重不漏”.
[对点训练]
1.设f(x)=若f(a)=f(a+1),则f()=( )
A.2 B.4
C.6 D.8
解析:选C.当0<a<1时,a+1>1,f(a)=,f(a+1)=2(a+1-1)=2a,
因为f(a)=f(a+1),所以=2a,
解得a=或a=0(舍去).
所以f()=f(4)=2×(4-1)=6.
当a≥1时,a+1≥2,所以f(a)=2(a-1),f(a+1)=2(a+1-1)=2a,所以2(a-1)=2a,无解.
综上,f()=6.
2.设函数f(x)=[ax2-(3a+1)x+3a+2]ex.
(1)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a;
(2)若f(x)在x=1处取得极小值,求a的取值范围.
解:(1)因为f(x)=[ax2-(3a+1)x+3a+2]ex,
所以f′(x)=[ax2-(a+1)x+1]ex.
f′(2)=(2a-1)e2.
由题设知f′(2)=0,即(2a-1)e2=0,解得a=.
(2)由(1)得f′(x)=[ax2-(a+1)x+1]ex=(ax-1)(x-1)ex.
若a>1,则当x∈时,f′(x)<0;
当x∈(1,+∞)时,f′(x)>0.
所以f(x)在x=1处取得极小值.
若a≤1,则当x∈(0,1)时,ax-1≤x-1<0,所以f′(x)>0.
所以1不是f(x)的极小值点.
综上可知,a的取值范围是(1,+∞).
应用三 由图形位置或形状引起的分类讨论
[典型例题]
设圆锥曲线C的两个焦点分别为F1,F2,若曲线C上存在点P满足|PF1|∶|F1F2|∶|PF2|=4∶3∶2,则曲线C的离心率等于________.
【解析】 不妨设|PF1|=4t,|F1F2|=3t,|PF2|=2t,其中t≠0.
若该曲线为椭圆,则有|PF1|+|PF2|=6t=2a,
|F1F2|=3t=2c,e====;
若该曲线为双曲线,则有|PF1|-|PF2|=2t=2a,
|F1F2|=3t=2c,e====.
【答案】 或
(1)圆锥曲线形状不确定时,常按椭圆、双曲线来分类讨论,求圆锥曲线的方程时,常按焦点的位置不同来分类讨论.
(2)相关计算中,涉及图形问题时,也常按图形的位置不同、大小差异等来分类讨论.
[对点训练]
1.过双曲线x2-=1的右焦点F作直线l交双曲线于A,B两点,若|AB|=4,则这样的直线l有( )
A.1条 B.2条
C.3条 D.4条
解析:选C.因为双曲线的两个顶点之间的距离是2,小于4,所以当直线l与双曲线左、右两支各有一个交点时,过双曲线的右焦点一定有两条直线满足条件;当直线l与实轴垂直时,有3-=1,解得y=2或y=-2,此时直线AB的长度是4,即只与双曲线右支有两个交点的所截弦长为4的直线仅有一条.
综上,可知有3条直线满足|AB|=4.
2.设F1,F2为椭圆+=1的两个焦点,点P为椭圆上一点.已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,则的值为________.
解析:(1)若∠PF2F1=90°,
则|PF1|2=|PF2|2+|F1F2|2,
又因为|PF1|+|PF2|=6,|F1F2|=2,
解得|PF1|=,|PF2|=,所以=.
(2)若∠F1PF2=90°,则|F1F2|2=|PF1|2+|PF2|2,
所以|PF1|2+(6-|PF1|)2=20,
所以|PF1|=4,|PF2|=2,所以=2.
综上知,的值为或2.
答案:或2
二、转化与化归思想
转化与化归的原则 | 常见的转化与化归的方法 |
1.熟悉化原则 2.简单化原则 3.直观化原则 4.正难则反原则 | 1.直接转化法 2.换元法 3.数形结合法 4.构造法 5.坐标法 6.类比法 7.特殊化方法 8.等价问题法 9.加强命题法 10.补集法 |
转化与化归思想就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学思想方法 |
应用一 一般与特殊的相互转化
[典型例题]
(1)过抛物线y=ax2(a>0)的焦点F,作一直线交抛物线于P,Q两点.若线段PF与FQ的长度分别为p,q,则+等于( )
A.2a B.
C.4a D.
(2)已知向量a,b满足|a|=1,|b|=2,则|a+b|+|a-b|的最小值是________,最大值是________.
【解析】 (1)抛物线y=ax2(a>0)的标准方程为x2=y(a>0),焦点F.
过焦点F作直线垂直于y轴,则|PF|=|QF|=,
所以+=4a.
(2)由题意,不妨设b=(2,0),a=(cos θ,sin θ),
则a+b=(2+cos θ,sin θ),a-b=(cos θ-2,sin θ),
令y=|a+b|+|a-b|
=+
=+,
则y2=10+2∈[16,20].
由此可得(|a+b|+|a-b|)max==2,
(|a+b|+|a-b|)min==4,
即|a+b|+|a-b|的最小值是4,最大值是2.
【答案】 (1)C (2)4 2
(1)一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.
(2)对于某些选择题、填空题,如果结论唯一或题目提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.
[对点训练]
已知函数f(x)=(a-3)x-ax3在[-1,1]上的最小值为-3,则实数a的取值范围是( )
A.(-∞,-1] B.[12,+∞)
C.[-1,12] D.
解析:选D.当a=0时,函数f(x)=-3x,x∈[-1,1],显然满足条件,故排除A、B;
(注意,对于特殊值的选取,越简单越好,0,1往往是首选.)
当a=-时,函数f(x)=x3-x,
f′(x)=x2-=(x2-1),
当-1≤x≤1时,f′(x)≤0,所以f(x)在[-1,1]上单调递减,所以f(x)min=f(1)=-=-3,满足条件,故排除C.综上,选D.
应用二 正与反的相互转化
[典型例题]
若对于任意t∈[1,2],函数g(x)=x3+x2-2x在区间(t,3)上总不为单调函数,则实数m的取值范围是________.
【解析】 由题意得g′(x)=3x2+(m+4)x-2,若g(x)在区间(t,3)上总为单调函数,则①g′(x)≥0在(t,3)上恒成立,或②g′(x)≤0在(t,3)上恒成立.
由①得3x2+(m+4)x-2≥0,即m+4≥-3x在x∈(t,3)上恒成立,所以m+4≥-3t恒成立,则m+4≥-1,即m≥-5;
由②得m+4≤-3x在x∈(t,3)上恒成立,
则m+4≤-9,即m≤-.
所以函数g(x)在区间(t,3)上总不为单调函数的m的取值范围为-<m<-5.
【答案】 (-,-5)
(1)本题是正与反的转化,由于函数不为单调函数有多种情况,所以可先求出其反面情况,体现“正难则反”的原则.
(2)题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多”“至少”及否定性命题情形的问题中.
[对点训练]
1.由命题“存在x0∈R,使e|x0-1|-m≤0”是假命题,得m的取值范围是(-∞,a),则实数a的取值是( )
A.(-∞,1) B.(-∞,2)
C.1 D.2
解析:选C.由命题“存在x0∈R,使e|x0-1|-m≤0”是假命题,可知它的否定形式“任意x∈R,使e|x-1|-m>0”是真命题,可得m的取值范围是(-∞,1),而(-∞,a)与(-∞,1)为同一区间,故a=1.
2.若二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一个值c,使得f(c)>0,则实数p的取值范围是________.
解析:如果在[-1,1]内没有值满足f(x)>0,则⇒⇒p≤-3或p≥,故实数满足条件的p的取值范围为.
答案:
应用三 常量与变量的相互转化
[典型例题]
已知函数f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是f(x)的导函数.对任意a∈[-1,1],都有g(x)<0,则实数x的取值范围为________.
【解析】 由题意,知g(x)=3x2-ax+3a-5,
令φ(a)=(3-x)a+3x2-5,-1≤a≤1.
由题意得即解得-<x<1.
故x的取值范围为.
【答案】
(1)本题是把关于x的函数转化为[-1,1]内关于a的一次函数的问题.
(2)在处理多变元的数学问题时,我们可以选取其中的常数(或参数),将其看成“主元”,而把其他变元看成常量,从而达到减少变元简化运算的目的.
[对点训练]
1.对于满足0≤p≤4的所有实数p,使不等式x2+px>4x+p-3成立的x的取值范围是________.
解析:设f(p)=(x-1)p+x2-4x+3,
则当x=1时,f(p)=0.所以x≠1.
f(p)在0≤p≤4时恒为正等价于即解得x>3或x<-1.
故x的取值范围为(-∞,-1)∪(3,+∞).
答案:(-∞,-1)∪(3,+∞)
2.设y=(log2x)2+(t-2)log2x-t+1,若t在[-2,2]上变化时,y恒取正值,则x的取值范围是________.
解析:设f(t)=(log2x-1)t+(log2x)2-2log2x+1,
则f(t)是一次函数,当t∈[-2,2]时,f(t)>0恒成立,则即解得log2x<-1或log2x>3,
即0<x<或x>8,
故x的取值范围是∪(8,+∞).
答案:∪(8,+∞)
应用四 形、体位置关系的相互转化
[典型例题]
在平行六面体ABCDA1B1C1D1中,AA1=AB,AB1⊥B1C1.
求证:(1)AB∥平面A1B1C;
(2)平面ABB1A1⊥平面A1BC.
【证明】 (1)在平行六面体ABCDA1B1C1D1中,AB∥A1B1.
因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,
所以AB∥平面A1B1C.
(2)在平行六面体ABCDA1B1C1D1中,四边形ABB1A1为平行四边形.
又因为AA1=AB,所以四边形ABB1A1为菱形,
所以AB1⊥A1B.
因为AB1⊥B1C1,BC∥B1C1,
所以AB1⊥BC.
又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,
所以AB1⊥平面A1BC,
又因为AB1⊂平面ABB1A1,
所以平面ABB1A1⊥平面A1BC.
形体位置关系的转化是针对几何问题采用的一种特殊转化方法.主要适用于涉及平行、垂直的证明,如线面平行、垂直的推理与证明就是充分利用线面位置关系中的判定定理、性质定理实现位置关系的转化.
[对点训练]
1.如图,在棱长为5的正方体ABCD-A1B1C1D1中,EF是棱AB上的一条线段,且EF=2,点Q是A1D1的中点,点P是棱C1D1上的动点,则四面体PQEF的体积( )
A.是变量且有最大值
B.是变量且有最小值
C.是变量且有最大值和最小值
D.是常数
解析:选D.点Q到棱AB的距离为常数,所以△EFQ的面积为定值.由C1D1∥EF,可得棱C1D1∥平面EFQ,所以点P到平面EFQ的距离是常数,于是可得四面体PQEF的体积为常数.
2.已知三棱锥P-ABC中,PA=BC=2,PB=AC=10,PC=AB=2,则三棱锥P-ABC的体积为________.
解析:因为三棱锥P-ABC的三组对边两两相等,故可将此三棱锥放在一个特定的长方体中(如图所示),把三棱锥P-ABC补成一个长方体AEBGFPDC,
易知三棱锥P-ABC的各棱分别是此长方体的面对角线.
不妨令PE=x,EB=y,EA=z,则由已知,可得
⇒
从而知VP-ABC=VAEBG-FPDC-VP-AEB-VC-ABG-VB-PDC-VA-FPC=VAEBG-FPDC-4VP-AEB=6×8×10-4×××6×8×10=160.
答案:160
应用五 函数、方程、不等式间的相互转化
[典型例题]
已知函数f(x)=3e|x|.若存在实数t∈[-1,+∞),使得对任意的x∈[1,m),m∈Z,且m>1,都有f(x+t)≤3ex,求m的最大值.
【解】 因为当t∈[-1,+∞),且x∈[1,m]时,x+t≥0,
所以f(x+t)≤3ex⇔ex+t≤ex⇔t≤1+ln x-x.
所以原命题等价转化为存在实数t∈[-1,+∞),使得不等式t≤1+ln x-x,对任意x∈[1,m)恒成立.
令h(x)=1+ln x-x(x≥1).
因为h′(x)=-1≤0,
所以函数h(x)在[1,+∞)上为减函数.
又x∈[1,m),所以h(x)min=h(m)=1+ln m-m,t值恒存在,只需1+ln m-m≥-1.
因为h(3)=ln 3-2=ln>ln =-1,h(4)=ln 4-3=ln<ln =-1,且函数h(x)在[1,+∞)内为减函数,所以满足条件的最大整数m的值为3.
(1)函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助.
(2)解决函数的问题需要方程、不等式的帮助,因为借助函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求参变量的范围.
[对点训练]
1.已知e为自然对数的底数,若对任意的x∈,总存在唯一的y∈[-1,1],使得ln x-x+1+a=y2ey成立,则实数a的取值范围是( )
A. B.
C. D.
解析:选B.设f(x)=ln x-x+1+a,当x∈时,f′(x)=≥0,f(x)是增函数,所以x∈时,f(x)∈;设g(y)=y2ey,则g′(y)=eyy(y+2),则g(y)在[-1,0)上单调递减,在[0,1]上单调递增,且g(-1) =<g(1)=e.因为对任意的x∈,总存在唯一的y∈[-1,1],使得f(x)=g(y)成立,所以⊆,解得<a≤e.
2.关于x的不等式x+-1-a2+2a>0对x∈(0,+∞)恒成立,则实数a的取值范围为______.
解析:设f(x)=x+(x>0),则f(x)=x+≥2=4(当且仅当x=2时,等号成立).因为关于x的不等式x+-1-a2+2a>0对x∈(0,+∞)恒成立,所以a2-2a+1<4恒成立,解得-1<a<3,所以实数a的取值范围为(-1,3).
答案:(-1,3)