四川省泸县第一中学2021届高三上学期开学考试 数学(理)(word版含答案)
展开2020年四川省泸县第一中学高三开学考试
理科数学
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.=( )
A. B. C. D.
2.在中,D是AB边上的中点,则=( )
A. B. C. D.
3.在的展开式中,的系数为( ).
A. B.5 C. D.10
4.设,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
5.已知函数,则不等式的解集是( ).
A. B.
C. D.
6.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
A.62% B.56%
C.46% D.42%
7.设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为( )
A. B. C. D.
8.已知2tanθ–tan(θ+)=7,则tanθ=( )
A.–2 B.–1 C.1 D.2
9.设函数,则f(x)( )
A.是偶函数,且在单调递增 B.是奇函数,且在单调递减
C.是偶函数,且在单调递增 D.是奇函数,且在单调递减
10.若,则( )
A. B. C. D.
11.设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:
①在()有且仅有3个极大值点
②在()有且仅有2个极小值点
③在()单调递增
④的取值范围是[)
其中所有正确结论的编号是
A.①④ B.②③ C.①②③ D.①③④
12.设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.
14.斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.
15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.
16.设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为___________
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=,≈1.414.
18.(12分)的内角的对边分别为,已知.
(1)求;
(2)若为锐角三角形,且,求面积的取值范围.
19.(12分)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
20.(12分)已知函数,为的导数.证明:
(1)在区间存在唯一极大值点;
(2)有且仅有2个零点.
21.(12分)已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点,,,求证:为定值.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)
在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.
(1)求的取值范围;
(2)求中点的轨迹的参数方程.
23.[选修4—5:不等式选讲](10分)
已知.
(1)当时,求不等式的解集;
(2)若时不等式成立,求的取值范围.
2020年四川省泸县第一中学高三开学考试
理科数学参考答案
1.B 2.C 3.C 4.A 5.D 6.C 7.D 8.D 9.D 10.A 11.D 12.B
13. 14. 15. 16.
17.(1)样区野生动物平均数为,
地块数为200,该地区这种野生动物的估计值为
(2)样本(i=1,2,…,20)的相关系数为
(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,
由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大,
采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,
从而可以获得该地区这种野生动物数量更准确的估计.
18(1)根据题意,由正弦定理得,因为,故,消去得.
,因为故或者,而根据题意,故不成立,所以,又因为,代入得,所以.
(2)因为是锐角三角形,由(1)知,得到,
故,解得.
又应用正弦定理,,
由三角形面积公式有:
.
又因,故,
故.故的取值范围是
19.证明(1)因为是长方体,所以侧面,而平面,所以
又,,平面,因此平面;
(2)以点坐标原点,以分别为轴,建立如下图所示的空间直角坐标系,
,
因为,所以,
所以,,
设是平面的法向量,
所以,
设是平面的法向量,
所以,
二面角的余弦值的绝对值为,
所以二面角的正弦值为.
20.(1)由题意知:定义域为:且
令,
,
在上单调递减,在上单调递减
在上单调递减
又,
,使得
当时,;时,
即在上单调递增;在上单调递减
则为唯一的极大值点
即:在区间上存在唯一的极大值点.
(2)由(1)知:,
①当时,由(1)可知在上单调递增
在上单调递减
又
为在上的唯一零点
②当时,在上单调递增,在上单调递减
又
在上单调递增,此时,不存在零点
又
,使得
在上单调递增,在上单调递减
又,
在上恒成立,此时不存在零点
③当时,单调递减,单调递减
在上单调递减
又,
即,又在上单调递减
在上存在唯一零点
④当时,,
即在上不存在零点
综上所述:有且仅有个零点
21.解:(Ⅰ)因为抛物线y2=2px经过点P(1,2),
所以4=2p,解得p=2,所以抛物线的方程为y2=4x.
由题意可知直线l的斜率存在且不为0,
设直线l的方程为y=kx+1(k≠0).
由得.
依题意,解得k<0或0<k<1.
又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.
所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).
(Ⅱ)设A(x1,y1),B(x2,y2).
由(I)知,.
直线PA的方程为.
令x=0,得点M的纵坐标为.
同理得点N的纵坐标为.
由,得,.
所以.
所以为定值.
22.解:(1)的直角坐标方程为.
当时,与交于两点.
当时,记,则的方程为.与交于两点当且仅当,解得或,即或.
综上,的取值范围是.
(2)的参数方程为为参数, .
设,,对应的参数分别为,,,则,且,满足.
于是,.又点的坐标满足
所以点的轨迹的参数方程是 为参数, .
23.解:(1)当时,,即
故不等式的解集为.
(2)当时成立等价于当时成立.
若,则当时;
若,的解集为,所以,故.
综上,的取值范围为.