人教版九年级上册第二十五章 概率初步25.2 用列举法求概率教课内容ppt课件
展开1.知道什么时候采用“直接列举法”和“列表法”.2.会正确“列表”、“画树状图”表示出所有可能出现的结果.(难点)3.知道如何利用“列表法”、“画树状图”求随机事件的概率.(重点)
我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这是一个游戏双方获胜概率大小的问题.
老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问,你们觉得这个游戏公平吗?
同时掷两枚硬币,试求下列事件的概率: (1)两枚两面一样; (2)一枚硬币正面朝上,一枚硬币反面朝上;
“掷两枚硬币”所有结果如下:
(1)两枚硬币两面一样包括两面都是正面,两面都是反面,共两种情形;所以学生赢的概率是
(2)一枚硬币正面朝上,一枚硬币反面朝上,共有反正,正反两种情形;所以老师赢的概率是
∵P(学生赢)=P(老师赢).
上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.
想一想 “同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?
随机事件“同时”与“先后”的关系:“两个相同的随机事件同时发生”与 “一个随机事件先后两次发生”的结果是一样的.
问题1 同时掷两枚硬币,试求下列事件的概率: (1)两枚两面一样; (2)一枚硬币正面朝上,一枚硬币反面朝上;
问题2 怎样列表格?
一个因素所包含的可能情况
另一个因素所包含的可能情况
两个因素所组合的所有可能情况,即n
列表法中表格构造特点:
例1 同时抛掷2枚均匀的骰子一次,骰子各面上的点数分别是1,2,···,6.试分别计算如下各随机事件的概率.(1)抛出的点数之和等于8;(2)抛出的点数之和等于12.
分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷出1,2,···,6中的每一种情况,第2枚骰子也可能掷出1,2,···,6中的每一种情况.可以用“列表法”列出所有可能的结果如下:
解:从上表可以看出,同时抛掷两枚骰子一次,所有可能出现的结果有36种.由于骰子是均匀的,所以每个结果出现的可能性相等.
当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用列表法.
例2: 一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,两次都摸出红球的概率是多少?
解:利用表格列出所有可能的结果:
变式:一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后不再放回袋中,再从中任意摸出一个球,两次都摸出红球的概率是多少?
例3.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同(2)两个骰子的点数之和是9(3)至少有一个骰子的点数为2
解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。(1)满足两个骰子的点数相同(记为事件A)的结果有6个,则P(A)= =(2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,则P(B)= =(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则P(C)=
当一次试验所有可能出现的结果较多时,用表格比较方便!
想一想:什么时候用“列表法”方便,什么时候用“树形图”方便?
当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法
当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用树形图
例 甲口袋中装有 2 个相同的小球,它们分别写有字母 A 和 B;乙口袋中装有 3 个相同的小球,它们分别写有字母 C,D 和 E;丙口袋中装有 2 个相同的小球,它们分别写有字母 H 和 I.从三个口袋中各随机取出 1 个小球. (1)取出的 3 个小球上恰好有 1 个、2 个和3 个元 音字母的概率分别是多少? (2)取出的 3 个小球上全是辅音字母的概率是多 少?
解:根据题意,可以画出如下树状图:
甲 A B
乙 C D E C D E
由树状图可以看出,所有可能出现的结果共有 12种,即
这些结果的可能性相等.
(1)只有 1 个元音字母的结果有
由树状图可以看出,所有可能出现的结果共有 12种,即
有 2 个元音字母的结果有
画树状图求概率的基本步骤
(1)明确一次试验的几个步骤及顺序;(2)画树状图列举一次试验的所有可能结果;(3)数出随机事件A包含的结果数m,试验的所有可能结果数n;(4)用概率公式进行计算.
例2 甲、乙、丙三人做传球的游戏,开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球三次.
(1)写出三次传球的所有可能结果(即传球的方式);
(2)指定事件A:“传球三次后,球又回到甲的手中”,写出A发生的所有可能结果;
共有八种可能的结果,每种结果出现的可能性相同;
(2)传球三次后,球又回到甲手中,事件A发生有两种可能出现结果(乙,丙,甲)(丙,乙,甲) (3) P (A)=
当试验包含两步时,列表法比较方便;当然,此时也可以用树形图法; 当事件要经过多个(三个或三个以上)步骤完成时,应选用树状图法求事件的概率.
思考 你能够用列表法写出3次传球的所有可能结果吗?
若再用列表法表示所有结果已经不方便!
例4 甲乙两人要去风景区游玩,仅知道每天开往风景区有3辆汽车,并且舒适程度分别为上等、中等、下等3种,当不知道怎样区分这些车,也不知道它们会以怎样的顺序开来.于是他们分别采用了不同的乘车办法:甲乘第1辆开来的车.乙不乘第1辆车,并且仔细观察第2辆车的情况,如比第1辆车好,就乘第2辆车,否则就乘第3辆车.试问甲、乙两人的乘车办法,哪一种更有利于乘上舒适度较好的车?
解:容易知道3辆汽车开来的先后顺序有如下6种可能情况:
假定6种顺序出现的可能性相等, 在各种可能顺序之下,甲乙两人分别会乘坐的汽车列表如下:
答:乙的乘车办法有有利于乘上舒适度较好的车.
1.小明与小红玩一次“石头、剪刀、布”游戏,则小明赢的概率是( )
2.某次考试中,每道单项选择题一般有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全对的概率是( )
A. B. C. D.
A. B. C. D.
3.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率:(1)三辆车全部继续直行;(2)两车向右,一车向左;(3)至少两车向左.
共有27种等可能行驶方向
(2)P(两车向右,一车向左)= ;(3) P(至少两车向左)=
两个试验因素或分两步进行的试验.
列表;确定m、n值代入概率公式计算.
在于正确列举出试验结果的各种可能性.
确保试验中每种结果出现的可能性大小相等.
初中数学人教版九年级上册25.2 用列举法求概率教学ppt课件: 这是一份初中数学人教版九年级上册25.2 用列举法求概率教学ppt课件,共27页。PPT课件主要包含了情境引入,合作学习,活动1,∴这个游戏是公平的,提炼概念,第一掷,第二掷,列表法,探究2列表法求概率,怎样列表格等内容,欢迎下载使用。
人教版九年级上册25.2 用列举法求概率一等奖课件ppt: 这是一份人教版九年级上册25.2 用列举法求概率一等奖课件ppt,文件包含人教版初中数学九年级上册2521直接用列举法求概率课件PPTpptx、人教版初中数学九年级上册2521直接用列举法求概率分层练习docx、人教版初中数学九年级上册2521直接用列举法求概率教案docx、人教版初中数学九年级上册2521直接用列举法求概率预习案docx等4份课件配套教学资源,其中PPT共26页, 欢迎下载使用。
人教版九年级上册第二十五章 概率初步25.2 用列举法求概率优秀ppt课件: 这是一份人教版九年级上册第二十五章 概率初步25.2 用列举法求概率优秀ppt课件,文件包含人教版数学九年级上册2521《用列举法求概率》课件pptx、人教版数学九年级上册2521《用列举法求概率》教案doc、人教版数学九年级上册2521《用列举法求概率》练习doc等3份课件配套教学资源,其中PPT共22页, 欢迎下载使用。