|试卷下载
搜索
    上传资料 赚现金
    2021高考数学大一轮复习考点规范练31等比数列及其前n项和理新人教A版
    立即下载
    加入资料篮
    2021高考数学大一轮复习考点规范练31等比数列及其前n项和理新人教A版01
    2021高考数学大一轮复习考点规范练31等比数列及其前n项和理新人教A版02
    2021高考数学大一轮复习考点规范练31等比数列及其前n项和理新人教A版03
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021高考数学大一轮复习考点规范练31等比数列及其前n项和理新人教A版

    展开

    考点规范练31 等比数列及其前n项和

     考点规范练A册第20页  

    基础巩固

    1.在正项等比数列{an}中,a2,a48是方程2x2-7x+6=0的两个根,则a1·a2·a25·a48·a49的值为(  )

    A B.9 C.±9 D.35

    答案:B

    解析:a2,a48是方程2x2-7x+6=0的两个根,a2·a48=3.

    a1·a49=a2·a48==3,a25>0,

    a1·a2·a25·a48·a49==9故选B.

    2.十二平均律是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起 ,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f,则第八个单音的频率为(  )

    Af Bf Cf Df

    答案:D

    解析:由题知,这十三个单音的频率构成首项为f,公比为的等比数列,则第八个单音的频率为f=f.

    3.已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=(  )

    A.7 B.5 C.-5 D.-7

    答案:D

    解析:{an}为等比数列,a5a6=a4a7=-8.

    联立可解得

    时,q3=-,故a1+a10=+a7q3=-7;

    时,q3=-2,故a1+a10=+a7q3=-7.

    综上可知,a1+a10=-7.

    4.(2019云南玉溪五调)已知正项等比数列{an}满足a3=1,a5a4的等差中项为,则a1的值为(  )

    A.4 B.2 C D

    答案:A

    解析:设等比数列{an}的公比为q,则q>0.由题意,得a5+a4=1,a3q2+a3q=1,q2+q=1,2q2+3q-2=0,解得q=q=-2(舍去),故a1==4.

    5.等差数列{an}的首项为1,公差不为0.a2,a3,a6成等比数列,则{an}前6项的和为(  )

    A.-24 B.-3 C.3 D.8

    答案:A

    解析:设等差数列的公差为d,则d0,=a2·a6,即(1+2d)2=(1+d)(1+5d),解得d=-2,所以S6=6×1+(-2)=-24,故选A.

    6.(2019广西崇左天等高级中学高三模拟)已知数列{an}为等比数列,首项a1=2,数列{bn}满足bn=log2an,且b2+b3+b4=9,则a5=(  )

    A.8 B.16 C.32 D.64

    答案:C

    解析:由题意知{bn}为等差数列,因为b2+b3+b4=9,所以b3=3,因为b1=1,所以公差d=1,则bn=n,即n=log2an,故an=2n,于是a5=25=32.

    7.设数列{an}是首项为a1,公差为-1的等差数列,Sn为其前n项和.S1,S2,S4成等比数列,则a1的值为     . 

    答案:-

    解析:由已知得S1=a1,S2=a1+a2=2a1-1,S4=4a1+(-1)=4a1-6.

    S1,S2,S4成等比数列,(2a1-1)2=a1(4a1-6),整理,得2a1+1=0,解得a1=-

    8.若等差数列{an}和等比数列{bn}满足a1=b1=-1,a4=b4=8,则=     . 

    答案:1

    解析:设等差数列{an}的公差为d,等比数列{bn}的公比为q,

    由题意知-1+3d=-q3=8,

    解得

    =1.

    9.(2019广西桂林、崇左联合模拟)已知数列{an}满足an=2an-1+1(n≥2),a4=15.

    (1)求a1,a2,a3;

    (2)判断数列{an+1}是否为等比数列,并说明理由;

    (3)求数列{an}的前n项和Sn.

    :(1)由an=2an-1+1及a4=15知a4=2a3+1,

    解得a3=7,同理得a2=3,a1=1.

    (2)由an=2an-1+1知an+1=2an-1+2,即an+1=2(an-1+1),

    故{an+1}是以a1+1=2为首项,公比为2的等比数列.

    (3)an+1=(a1+1)·2n-1,an=2n-1.

    Sn=a1+a2+a3++an=(21-1)+(22-1)+(23-1)++(2n-1)=(21+22+23++2n)-n=-n=2n+1-2-n.

    10.已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.

    (1)求{an}的通项公式;

    (2)求{bn}的前n项和.

    :(1)由已知,a1b2+b2=b1,b1=1,b2=,得a1=2.

    所以数列{an}是首项为2,公差为3的等差数列,通项公式为an=3n-1.

    (2)由(1)和anbn+1+bn+1=nbn,得bn+1=,因此{bn}是首项为1,公比为的等比数列.

    记{bn}的前n项和为Sn,则Sn=

    11.已知等差数列{an}的前n项和为Sn,且S4=4(a3+1),3a3=5a4,数列{bn}是等比数列,且b1b2=b3,2b1=a5.

    (1)求数列{an},{bn}的通项公式;

    (2)求数列{|an|}的前n项和Tn.

    :(1)设等差数列{an}的公差为d.

    S4=4(a3+1),3a3=5a4,

    解得

    an=11-2n.

    设数列{bn}的公比为q.b1b2=b3,2b1=a5,

    解得bn=

    (2)由(1)知,Sn=10n-n2.

    an=11-2n≤0可知n≥5.5,

    a1>0,a2>0,…,a5>0,a6<0,a7<0,…,an<0.

    故当n≤5时,Tn=Sn=10n-n2;

    n≥6时,Tn=2S5-Sn=n2-10n+50.

    于是Tn=

    能力提升

    12.a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于(  )

    A.6 B.7 C.8 D.9

    答案:D

    解析:a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,a+b=p,ab=q.

    p>0,q>0,a>0,b>0.

    a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,

    p=a+b=5,q=1×4=4.p+q=9.故选D.

    13.如图,正方形上连接着等腰直角三角形,等腰直角三角形的腰上再连接正方形,……如此继续下去得到一个树形图形,称为勾股树.若某勾股树含有1 023个正方形,且其最大的正方形的边长为,则其最小的正方形的边长为     . 

    答案:

    解析:由题意,得各正方形的边长构成以为首项,为公比的等比数列.已知共得到1023个正方形,则1+2++2n-1=1023,解得n=10,故最小的正方形的边长为

    14.设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2an的最大值为     . 

    答案:64

    解析:设{an}的公比为q.

    由已知a1+a3=10,a2+a4=a1q+a3q=5,

    两式相除得,

    解得q=,a1=8,所以a1a2an=8n,抛物线f(n)=-n2+n的对称轴为n=-=3.5,

    nN*,所以当n=3或n=4时,a1a2an取最大值为=26=64.

    15.已知等比数列{an}与等差数列{bn},a1=b1=1,a1a2,a1,a2,b3成等差数列,b1,a2,b4成等比数列.

    (1)求{an},{bn}的通项公式;

    (2)设Sn,Tn分别是数列{an},{bn}的前n项和,若Sn+Tn>100,求n的最小值.

    :(1)设数列{an}的公比为q,数列{bn}的公差为d,

    解得(舍)或

    an=2n-1,bn=n.

    (2)由(1)易知Sn==2n-1,Tn=

    Sn+Tn>100,得2n+>101.

    是单调递增数列,且26+=85<101,27+=156>101,n的最小值为7.

    高考预测

    16.已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2).

    (1)求证:{an+1+2an}是等比数列;

    (2)求数列{an}的通项公式.

    (1)证明an+1=an+6an-1(n≥2),

    an+1+2an=3an+6an-1=3(an+2an-1)(n≥2).

    a1=5,a2=5,a2+2a1=15,

    an+2an-10(n≥2),=3(n≥2),

    数列{an+1+2an}是以15为首项,3为公比的等比数列.

    (2)解由(1)得an+1+2an=15×3n-1=5×3n,则an+1=-2an+5×3n,an+1-3n+1=-2(an-3n).a1-3=2,an-3n0,

    {an-3n}是以2为首项,-2为公比的等比数列.

    an-3n=2×(-2)n-1,即an=2×(-2)n-1+3n=3n-(-2)n.

     

     

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map