2020中考数学复习方案基础小卷速测(七)二次函数的实际应用
展开基础小卷速测(七) 二次函数的实际应用
一、选择题
1.一小球被抛出后,距离地面的高度h(m)和飞行时间t(s)满足下面的函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是( )
A.1 m B.5 m C.6 m D.7 m
2.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图50所示,若小球在发射后第2 s与第6 s时的高度相等,则下列时刻中小球的高度最高的是( )
A.第3 s B.第3.5 s C.第4.2 s D.第6.5 s
3.在羽毛球比赛中,某次羽毛球的运动路线可以看作是抛物线y=-x2+bx+c的一部分,如图53,其中出球点B离地面O点的距离是1 m,球落地点A到O点的距离是4 m,那么这条抛物线的解析式是( )
A.y=-x2+x+1 B.y=-x2+x-1
C.y=-x2-x+1 D.y=-x2-x-1
4.用总长为32 m的篱笆墙围成一个扇形的花园.若使扇形的面积y m2最大,则扇形的半径x m等于( )
A.8 m B. m C. m D.15 m
5.如图5,某公园草坪的防护栏是由100段形状相同的抛物线组成的,为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m,则这条防护栏需要不锈钢支柱的总长度为( )
A.50 m B.100 m C.160 m D.200 m
二、填空题
6.如图69的一座拱桥,当水面宽AB为12 m时,桥洞顶部离水面4 m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=-(x-6)2+4,则选取点B为坐标原点时的抛物线的解析式是______.
7.某工厂的大门是一抛物线型水泥建筑物,大门的地面宽度为8 m,两侧距地面3 m高处各有一个壁灯,两壁灯之间的水平距离为6 m,如图30所示,则厂门的高为______m(水泥建筑物厚度忽略不计,精确到0.1 m).
8.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 ),中间用两道墙隔开,如图56.已知计划中的建筑材料可建墙的总长度为48 ,则这三间长方形种牛饲养室的总占地面积的最大值为______2.
9.竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.若第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=______.
10.在美化校园的活动中,某兴趣小组想借助如图66所示的直角墙角(两边足够长),用28 m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.
(1)若花园的面积为192 m2,则x=______;
(2)若在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积的最大值是______m2.
三、解答题
11.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)请直接写出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
12.为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v()是车流密度x(辆/)的函数,当桥上的车流密度达到220辆/时,造成堵塞,此时车流速度为0 ;当车流密度为20辆/时,车流速度为80 .研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.
(1)求彩虹桥上车流密度为100辆/时的车流速度;
(2)在交通高峰时段,为使彩虹桥上车流速度大于40 且小于60 ,应控制彩虹桥上的车流密度在什么范围内?
(3)当车流量(辆/)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.
13.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“梦想中国秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图71中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).
(1)求日销售量(件)和销售价(元/件)之间的函数关系式;
(2若该店暂不考虑偿还债务,当天的销售价为48元/件时,当天正好收支平衡(收入=支出),求该店员工的人数;
(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?
参考答案
1.C [解析]抛物线的顶点坐标是(1,6).
2.C [解析]抛物线的对称轴是t=4.|t-4|越小,t所对应的高度h越大.故选C.
3.A [解析]将B(0,1),A(4,0)代入y=-x2+bx+c,得解得
∴这条抛物线的解析式是y=-x2+x+1,故选A.
4.A [解析]弧长为32-2x.y=-x2+16x=-(x-8)2+64,∴当x=8时,扇形的面积最大.
5.C [解析]建立如图1所示的直角坐标系,设抛物线的解析式为y=ax2+b.将点(0,)和点(1,0)的坐标代入求得a=-,b=0.5,∴抛物线的解析式为y=-x2+.
显然A点的坐标为(,0),C点坐标为(,0).把x=代入抛物线解析式得y=,即AB=;把x=代入抛物线解析式得y=,即CD=.
∴这条防护栏需要不锈钢支柱的总长度为(+)×2×100=160(m).
6.y=-(x+6)2+4
7.6.9 [解析]以抛物线的对称轴为y轴,对称轴与地面的交点为坐标原点建立直角坐标系,则可设抛物线的解析式为y=ax2+h.∵抛物线经过点(-4,0)和(-3,3).∴解得a=,h=≈6.9,∴厂门高约为6.9 m.
8.432 [解析]设总占地面积为S 2,与墙垂直的边的长度为x ,
则与墙平行的边的长度为(48-4x),其中0<x<12.
∴S=x(48-x)=-(x-24)2+576.
∵抛物线的开口向下,∴x<24时,S随x的增大而增大.
∴x=12时,S可取得最大值,最大值为=12×(48-12)=432.
9.1.6秒 [解析]设小球离地的高度为y米,则第一个小球y与t之间的关系式为
y1=a(t-1.1)2+h.
第二个小球y与t之间的关系式为
y2=a(t-1-1.1)2+h,即y2=a(t-2.1)2+h.
令y1=y2,得a(t-1.1)2+h=a(t-2.1)2+h,
解得t=1.6.
10.(1)12或16;(2)195
[解析](1)由题意,得x(28-x)=192.
解这个方程,得x1=12,x2=16.
(2)花园面积S=x(28-x)=-(x-14)2+196.
由题意,知解得6≤x≤13.
在6≤x≤13范围内,S随x的增大而增大.
∴当x=13时,S最大=-(13-14) 2+196=195(m2).
11.解:(1)y=-2x+80。
(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,
根据题意得:(x-20)y=150,
则(x-20)(-2x+80)=150,
整理得:x2-60x+875=0,
(x-25)(x-35)=0,
解得:x1=25,x2=35(不合题意,舍去),
答:每本纪念册的销售单价是25元.
(3)由题意可得:
w=(x-20)(-2x+80)
=-2x2+120x-1600
=-2(x-30)2+200,
此时当x=30时,w最大,
又∵售价不低于20元且不高于28元,
∴x<30时,y随x的增大而增大,即当x=28时,w最大=-2(28-30)2+200=192(元),
答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.
12.解:(1)设车流速度v与车流密度x的函数关系为v=kx+b.由题意,得
解得
∴当20≤x≤220时,v=-x+88.
当x=100时,v=48().
(2)由题意,得
解得70<x<120.
∴应控制大桥上的车流密度在70<x<120范围内.
(3)当20≤x≤220时,
y=vx=(-x+88)x=-(x-110)2+4840.
∴当x=110时,y最大=4840.
∴当车流密度是110辆/,车流量y取得最大值4840辆/.
13.解:(1)当40≤x<58时,设函数关系式为y=kx+b.
把x=40,y=60和x=58,y=24分别代入y=kx+b,得
解得
所以y=-2x+140.
当58x≤x≤71时,设函数关系式为y=mx+n.
把x=58,y=24和x=71,y=11分别代入y=mx+n,得
解得
所以y=-x+82.
(2)设该店员工为a人.
把x=48代入y=-2x+140,得y=-2×48+140=44.
由题意(48-40)×44=82a+106,解得a=3.
即该店员工为3人.
(3)设该店每天的销售利润为W元,则W=(x-40)y.
①当40≤x<58时,W=(x-40)(-2x+140)=-2x2+220x-5600.
即W=-2(x-55)2+450.
当x=55时,W有最大值为450.
②当58≤x≤71时,W=(x-40)(-x+82)=-x2+122x-3280.
即W=-(x-61)2+441.
当x=61时,W有最大值为441.
综上可知,当x=55时,每天可获得最大利润450元.
(38400+30000)÷(450-82×2-106)=380(天).
即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.