第1讲 空间几何体(知识点串讲)(复习讲义)
展开第一讲 空间几何体
【知识梳理】
1.多面体的结构特征
2.旋转体的形成
几何体 | 旋转图形 | 旋转轴 |
圆柱 | 矩形 | 任一边所在的直线 |
圆锥 | 直角三角形 | 任一直角边所在的直线 |
圆台 | 直角梯形 | 垂直于底边的腰所在的直线 |
球 | 半圆 | 直径所在的直线 |
【考点精炼】
考点一:空间几何体的结构特征
例1.(2019年温州月考)下列结论正确的是( )
A.各个面都是三角形的几何体是三棱锥
B.侧面都是等腰三角形的棱锥是正棱锥
C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
练习.给出下列命题:
①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;
②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;
③棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确命题的个数是( )
A.0 B.1
C.2 D.3
【知识梳理】
3.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其规则是:
(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.
(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度变为原来的一半.
“三变”
“三不变”
(3)平面图形的直观图与原图形面积的关系:S直观图=S原图.
【考点精炼】
考点二:空间几何体的直观图
例2、(2019年金台区月考)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是( )
A.正方形 B.矩形
C.菱形 D.一般的平行四边形
练习、如图,一个水平放置的平面图形的直观图(斜二测画法)是一个底角为45°、腰和上底长均为2的等腰梯形,则这个平面图形的面积是( )
A.2+ B.1+
C.4+2 D.8+4
考点三:空间几何体的平面展开图
例3、(2018·全国卷Ⅰ改编)某圆柱的高为2,底面周长为16,M,N分别是圆柱上、下底面圆周上的两点,其中OE⊥ON,如图所示,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )
A.2 B.2
C.3 D.2
[训练] (2019·山东潍坊检测)如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,则蚂蚁爬行的最短距离为________.
【知识梳理】
4.多面体的表面积、侧面积
因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.
5.圆柱、圆锥、圆台的侧面展开图及侧面积公式
| 圆柱 | 圆锥 | 圆台 |
侧面展 开图 | |||
侧面积 公式 | S圆柱侧=2πrl | S圆锥侧=πrl | S圆台侧=π(r1+r2)l |
6.柱、锥、台和球的表面积和体积
名称 几何体 | 表面积 | 体积 |
柱体 (棱柱和圆柱) | S表面积=S侧+2S底 | V=Sh |
锥体 (棱锥和圆锥) | S表面积=S侧+S底 | V=Sh |
台体 (棱台和圆台) | S表面积=S侧+S上+S下 | V=(S上+S下+)h |
球 | S=4πR2 | V=πR3 |
【考点精炼】
考点四:空间几何体的表面积
例4.(2019·山东泰安检测)如图,直角梯形ABCD中,AD⊥DC,AD∥BC,BC=2CD=2AD=2,若将直角梯形绕BC边旋转一周,则所得几何体的表面积为________.
练习.(2019·广东湛江月考)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.
【知识梳理】
7.空间几何体体积问题的常见类型及解题策略
(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.
(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.
(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.
【考点精炼】
考点五:空间几何体的体积
例5、(2018·天津卷)如图,已知正方体ABCDA1B1C1D1的棱长为1,则四棱锥A1BB1D1D的体积为________.
练习、(2019·山东青岛月考)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )
A. B.
C. D.
【知识梳理】
8.几个与球有关的切、接常用结论
(1)正方体的棱长为a,球的半径为R,
①若球为正方体的外接球,则2R=a;
②若球为正方体的内切球,则2R=a;
③若球与正方体的各棱相切,则2R=a.
(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.
(3)正四面体的外接球与内切球的半径之比为3∶1.
9.空间几何体与球接、切问题的求解方法
(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.
(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.
【考点精炼】
考点六:与球有关的切接问题
例6、(2016·全国卷Ⅲ)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
A.4π B.
C.6π D.
[变式探究1] 若本例中的条件变为“直三棱柱ABCA1B1C1的6个顶点都在球O的球面上”,若AB=3,AC=4,AB⊥AC,AA1=12,求球O的表面积.
[变式探究2] 若本例中的条件变为“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.
练习、(2018·全国卷Ⅲ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥DABC体积的最大值为( )
A.12 B.18
C.24 D.54