![初中数学苏科八下期中卷(2)01](http://img-preview.51jiaoxi.com/2/3/5609414/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![初中数学苏科八下期中卷(2)02](http://img-preview.51jiaoxi.com/2/3/5609414/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![初中数学苏科八下期中卷(2)03](http://img-preview.51jiaoxi.com/2/3/5609414/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩31页未读,
继续阅读
所属成套资源:初中数学苏科八下册单元测试卷(全册)
成套系列资料,整套一键下载
- 初中数学苏科八下第12章测试卷(1) 试卷 3 次下载
- 初中数学苏科八下第12章测试卷(2) 试卷 4 次下载
- 初中数学苏科八下期末卷(1) 试卷 7 次下载
- 初中数学苏科八下期末卷(2) 试卷 6 次下载
- 初中数学苏科八下期中卷(1) 试卷 3 次下载
初中数学苏科八下期中卷(2)
展开
期中卷(2)
一.选择题
1. 2017年某市将有5万名学生参加中考,为了解这些考生的数学成绩,中考后将从中抽取2000名考生的数学成绩进行统计分析,在这个问题中,下列说法正确的是( )
A.2000名考生是总体的一个样本B.每个考生是个体C.这5万名考生的数学中考成绩的全体是总体D.统计中采用的调查方式是普查
2.为了让学生了解南海,关注南海,某校1500名学生参加了南海有关知识竞赛,成绩记为A、B、C、D四等,从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是( )
A.样本容量是200B.样本中C等所占百分比是10%C.D等所在扇形的圆心角为15°D.估计全校学生成绩为A等大约有900人
3.在一篇文章中,“的”、“地”、“和”三个字共出现100次,已知“的”和“地”的频率之和是0.7,那么“和”字出现的频数是( )
A.28 B.30 C.32 D.34
4.某频数分布直方图中,共有A,B,C,D,E五个小组,频数分别为10,15,25,35,10,则直方图中,长方形高的比为( )
A.2,3,5,7,2 B.1,3,4,5,1 C.2,3,5,6,2 D.2,4,5,4,2
5.下列事件中,是必然事件的为( )
A.明天会下雨B.打开电视机,正在播放动画片C.三角形内角和为180°D.经过一个路口,信号灯刚好是红灯
6.从概率统计的角度解读下列诗词所描述的事件.其中属于确定事件的是( )
A.黄梅时节家家雨,青草池塘处处蛙B.人间四月芳菲尽,山寺桃花始盛开C.水面上秤锤浮,直待黄河彻底枯D.一夜北风紧,开门雪尚飘
7.下列说法正确的是( )
A.在同一年出生的400人中至少有两人的生日相同B.投掷一粒骰子,连投两次点数相同的概率与连投两次点数都为1的概率是相等的C.从一副完整的扑克牌中随机抽取一张牌恰好是红桃K,这是必然事件D.一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是
8.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是( )
A.事件A发生的频率是B.反复大量做这种试验,事件A只发生了7次C.做100次这种试验,事件A一定发生7次D.做100次这种试验,事件A可能发生7次
9.如图是某班50名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )
A.5﹣10元 B.10﹣15元 C.15﹣20元 D.20﹣25元
10.某次考试中,某班级的数学成绩统计图如图.下列说法中:
①得分在70~80分之间的人数最多;
②该班的总人数为40;
③得分在90~100分之间的人数最少;
④该班及格(≥60分)率是65%.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
11.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出( )
A.各项消费金额占消费总金额的百分比B.各项消费的金额C.各项消费金额的增减变化情况D.消费的总金额
12.依据某校九(1)班在体育毕业考试中全班所有学生成绩,制成的频数分布直方图如图(学生成绩取整数),则成绩在21.5﹣24.5这一分数段的频数是( )
A.1 B.4 C.10 D.15
二.填空题
13.为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是 .(填“全面调查”或“抽样调查”)
14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是____ 万元。
15.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为 .
16.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:
通话时间x/min
0<x≤5
5<x≤10
10<x≤15
15<x≤20
频数(通话次数)
20
16
9
5
则通话时间不超过10min的频率为 .
17. “抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个).
18.一个均匀的正六面体的六个面上,有一个面写1,两个面写2,三个面写3,任意投掷一次该六面体,则朝上的一面是3的可能性是_________.
三.解答题
19.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
使用次数
0
1
2
3
4
5(含5次以上)
累计车费
0
0.5
0.9
a
b
1.5
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
使用次数
0
1
2
3
4
5
人数
5
15
10
30
25
15
(1)写出a,b的值;
(2)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.
类别
A
B
C
D
E
节目类型
新闻
体育
动画
娱乐
戏曲
人数
12
30
m
54
9
请你根据以上的信息,回答下列问题:
(1)被调查学生中,最喜爱体育节目的有 人,这些学生数占被调查总人数的百分比为 %.
(2)被调查学生的总数为 人,统计表中m的值为 ,统计图中n的值为 .
(3)在统计图中,E类所对应扇形的圆心角的度数为 .
(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.
21.为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
某校九年级50名学生跳高测试成绩的频数表
组别(m)
频数
1.09~1.19
8
1.19~1.29
12
1.29~1.39
A
1.39~1.49
10
(1)求a的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.
22.某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:
(1)求n的值;
(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.
23.为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:
睡眠情况分段情况如下
组别
睡眠时间x(小时)
A
4.5≤x<5.5
B
5.5≤x<6.5
C
6.5≤x<7.5
D
7.5≤x<8.5
E
8.5≤x<9.5
根据图表提供的信息,回答下列问题:
(1)直接写出统计图中a的值 ;
(2)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?
24.随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:
(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)
请依据统计结果回答以下问题:
(1)试求进行该试验的车辆数;
(2)请补全频数分布直方图;
(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km以上?
答案
一.选择题
1. 2017年某市将有5万名学生参加中考,为了解这些考生的数学成绩,中考后将从中抽取2000名考生的数学成绩进行统计分析,在这个问题中,下列说法正确的是( )
A.2000名考生是总体的一个样本B.每个考生是个体C.这5万名考生的数学中考成绩的全体是总体D.统计中采用的调查方式是普查
【考点】V3:总体、个体、样本、样本容量;V2:全面调查与抽样调查.
【专题】填空题
【难度】易
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【解答】解:A、从中抽取2000名考生的数学成绩是总体的一个样本,故A不符合题意;
B、每个考生的成绩是个体,故B不符合题意;
C、这5万名考生的数学中考成绩的全体是总体,故C符合题意;
D、统计中采取抽样调查,故D不符合题意;
故选:C.
【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
2.为了让学生了解南海,关注南海,某校1500名学生参加了南海有关知识竞赛,成绩记为A、B、C、D四等,从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是( )
A.样本容量是200B.样本中C等所占百分比是10%C.D等所在扇形的圆心角为15°D.估计全校学生成绩为A等大约有900人
【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.
【专题】填空题
【难度】易
【分析】根据条形统计图和扇形统计图提供的数据分别列式计算,再对每一项进行分析即可.
【解答】解:A、=200(名),则样本容量是200,故A不符合题意;
B、样本中C等所占百分比是1﹣60%﹣25%﹣×100%=10%,故B不符合题意;
C、成绩为A的人数是:200×60%=120(人),
成绩为D的人数是200﹣120﹣50﹣20=10(人),
D等所在扇形的圆心角为:360°×=18°,故C符合题意;
D、全校学生成绩为A等大约有1500×60%=900人,故D不符合题意.
故选:C.
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
3.在一篇文章中,“的”、“地”、“和”三个字共出现100次,已知“的”和“地”的频率之和是0.7,那么“和”字出现的频数是( )
A.28 B.30 C.32 D.34
【考点】V6:频数与频率.
【专题】填空题
【难度】易
【分析】根据“的”和“地”的频率之和是0.7,得出“和”字出现的频率是0.3,再根据频数=频率×数据总数,即可得出答案.
【解答】解:“和”字出现的频率是1﹣0.7=0.3,
则“和”字出现的频数是100×0.3=30;
故选B.
【点评】此题考查了频数和频率之间的关系,掌握频率的定义:每个对象出现的次数与总次数的比值(或者百分比)即频数=频率×数据总数是本题的关键.
4.某频数分布直方图中,共有A,B,C,D,E五个小组,频数分别为10,15,25,35,10,则直方图中,长方形高的比为( )
A.2,3,5,7,2 B.1,3,4,5,1 C.2,3,5,6,2 D.2,4,5,4,2
【考点】V8:频数(率)分布直方图.
【专题】填空题
【难度】易
【分析】长方形高的比等于频数的比,据此即可求解.
【解答】解:长方形高的比等于10:15:25:35:10=2:3:5:7:2.
故选A.
【点评】本题考查了频数分布直方图,理解长方形高的比等于频数的比是关键.
5.下列事件中,是必然事件的为( )
A.明天会下雨B.打开电视机,正在播放动画片C.三角形内角和为180°D.经过一个路口,信号灯刚好是红灯
【考点】X1:随机事件.
【专题】填空题
【难度】易
【分析】必然事件就是一定发生的事件,依据定义即可判断.
【解答】解:A、明天可能下雨也可能不下雨,是随机事件;
B、打开电视机可能播动画片也可能不是,是随机事件;
C、三角形的内角和为180°,是必然事件;
D、经过一个路口,可能是红灯也可能不是,是随机事件,
故选:C.
【点评】考查了必然事件的概念.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
6.从概率统计的角度解读下列诗词所描述的事件.其中属于确定事件的是( )
A.黄梅时节家家雨,青草池塘处处蛙B.人间四月芳菲尽,山寺桃花始盛开C.水面上秤锤浮,直待黄河彻底枯D.一夜北风紧,开门雪尚飘
【考点】X1:随机事件.
【专题】填空题
【难度】易
【分析】根据事件发生的可能性大小判断相应事件的类型即可.
【解答】解:A、黄梅时节家家雨,青草池塘处处蛙是随机事件,故A不符合题意;
B、人间四月芳菲尽,山寺桃花始盛开是随机事件,故B不符合题意;
C、水面上秤锤浮,直待黄河彻底枯是不可能事件,故C符合题意;
D、一夜北风紧,开门雪尚飘是随机事件,故D不符合题意;
故选:C.
【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7.下列说法正确的是( )
A.在同一年出生的400人中至少有两人的生日相同B.投掷一粒骰子,连投两次点数相同的概率与连投两次点数都为1的概率是相等的C.从一副完整的扑克牌中随机抽取一张牌恰好是红桃K,这是必然事件D.一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是
【考点】X3:概率的意义.
【专题】填空题
【难度】易
【分析】根据概率的意义以及随机事件和必然事件的定义对各选项分析判断即可得解.
【解答】解:A、在同一年出生的400人中至少有两人的生日相同,正确,故本选项正确;
B、投掷一粒骰子,连投两次点数相同的概率是=,连投两次点数都为1的概率是,不相等,故本选项错误;
C、从一副完整的扑克牌中随机抽取一张牌恰好是红桃K,这是随机事件,故本选项错误;
D、一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是,故本选项错误.
故选A.
【点评】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
8.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是( )
A.事件A发生的频率是B.反复大量做这种试验,事件A只发生了7次C.做100次这种试验,事件A一定发生7次D.做100次这种试验,事件A可能发生7次
【考点】X3:概率的意义.
【专题】填空题
【难度】易
【分析】根据概率的意义,可得事件A发生的概率是,表示事件A可能发生7次,但不是一定发生7次,或者只发生了7次,也不表示事件A发生的频率是,据此判断即可.
【解答】解:∵事件A发生的概率是,不表示事件A发生的频率是,
∴选项A不正确;∵事件A发生的概率是,不表示事件A只发生了7次,可能比7次多,也有可能比7次少,
∴选项B不正确;
∵事件A发生的概率是,不表示事件A一定发生7次,
∴选项C不正确;
∵事件A发生的概率是,表示事件A可能发生7次,
∴选项D正确.
故选:D.
【点评】此题主要考查了概率的意义,要熟练掌握,解答此题的关键是要明确:一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.
9.如图是某班50名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )
A.5﹣10元 B.10﹣15元 C.15﹣20元 D.20﹣25元
【考点】V8:频数(率)分布直方图.
【专题】填空题
【难度】易
【分析】根据频数分布直方图,可以得到捐款人数最多的一组,本题得以解决.
【解答】解:由频数分布直方图可得,
捐款人数最多的一组是15﹣20元,
故选C.
【点评】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.
10.某次考试中,某班级的数学成绩统计图如图.下列说法中:
①得分在70~80分之间的人数最多;
②该班的总人数为40;
③得分在90~100分之间的人数最少;
④该班及格(≥60分)率是65%.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【考点】V8:频数(率)分布直方图.
【专题】填空题
【难度】易
【分析】根据条形统计图,求出总人数,及格率,得分在70~80分和90~100分之间的人数即可判断.
【解答】解:由条形统计图可知,该班总人数为4+12+14+8+2=40人.
得分在70~80分之间的人数最多,得分在90~100分之间的人数最少,及格率==90%.
故正确的有①②③.
故选C.
【点评】本题考查频率分布直方图、及格率等知识,解题的关键是熟练掌握基本概念,属于基础题,中考常考题型.
11.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出( )
A.各项消费金额占消费总金额的百分比B.各项消费的金额C.各项消费金额的增减变化情况D.消费的总金额
【考点】VB:扇形统计图.
【专题】填空题
【难度】易
【分析】根据题意和扇形统计图可以得到各项消费金额占消费总金额的百分比,从而可以解答本题.
【解答】解:由题意和扇形统计图可得,
从图中可看出各项消费金额占消费总金额的百分比,
故选A.
【点评】本题考查扇形统计图,解题的关键是明确扇形统计图的特点,从中可以得到相关的信息.
12.依据某校九(1)班在体育毕业考试中全班所有学生成绩,制成的频数分布直方图如图(学生成绩取整数),则成绩在21.5﹣24.5这一分数段的频数是( )
A.1 B.4 C.10 D.15
【考点】V8:频数(率)分布直方图.
【专题】填空题
【难度】易
【分析】成绩在21.5﹣24.5这一分数段的频数即学生数,根据直方图即可直接解答.
【解答】解:成绩在21.5﹣24.5这一分数段的频数是10.
故选C.
【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
二.填空题
13.为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是 .(填“全面调查”或“抽样调查”)
【考点】V2:全面调查与抽样调查.
【专题】填空题
【难度】中
【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【解答】解:了调查某市中小学生对“营养午餐”的满意程度,
因为人员多、所费人力、物力和时间较多
所以适合采用的调查方式是抽样调查,
故答案为:抽样调查.
【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是____ 万元。
【考点】VB:扇形统计图.
【专题】填空题
【难度】中
【分析】利用二月份的产值除以对应的百分比求得第一季度的总产值,然后求得平均数.
【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=240(万元),
则该企业第一季度月产值的平均值是×240=80(万元).
故答案是:80.
【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
15.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为 .
【考点】V6:频数与频率.
【专题】填空题
【难度】中
【分析】设被调查的学生人数为x人,则有=0.25,解方程即可.
【解答】解:设被调查的学生人数为x人,
则有=0.25,
解得x=48,
经检验x=48是方程的解.
故答案为48;
【点评】本题考查频数与频率、记住两者的关系是解题的关键,属于基础题.
16.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:
通话时间x/min
0<x≤5
5<x≤10
10<x≤15
15<x≤20
频数(通话次数)
20
16
9
5
则通话时间不超过10min的频率为 .
【考点】V7:频数(率)分布表.
【专题】填空题
【难度】中
【分析】求出第一、二组与总次数的比值即可求解.
【解答】解:通话时间不超过10min的频率为==.
故答案是:.
【点评】本题考查了频率的计算公式,理解频率公式:频率=是关键.
17. “抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个).
【考点】X1:随机事件.
【专题】填空题
【难度】中
【分析】根据事件发生的可能性大小判断相应事件的类型即可.
【解答】解:“抛掷一枚质地均匀的硬币,正面向上”是 随机事件,
故答案为:随机.
【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
18.一个均匀的正六面体的六个面上,有一个面写1,两个面写2,三个面写3,任意投掷一次该六面体,则朝上的一面是3的可能性是_________.
【考点】X2:可能性的大小.
【专题】填空题
【难度】中
【分析】先找出任意投掷一次该六面体所能出现的情况及出现3的情况,再由概率公式即可得出结论.
【解答】解:∵一个均匀的正六面体的六个面上,有一个面写1,两个面写2,三个面写3,
∴任意投掷一次该六面体可能出现6种情况,其中写有3的面有3种,
∴朝上的一面是3的可能性==.
故答案为:.
【点评】本题考查的是可能性的大小,熟记概率公式是解答此题的关键.
三.解答题
19.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
使用次数
0
1
2
3
4
5(含5次以上)
累计车费
0
0.5
0.9
a
b
1.5
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
使用次数
0
1
2
3
4
5
人数
5
15
10
30
25
15
(1)写出a,b的值;
(2)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
【考点】V5:用样本估计总体.
【专题】解答题
【难度】难
【分析】(1)根据收费调整情况列出算式计算即可求解;
(2)先根据平均数的计算公式求出抽取的100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.
【解答】解:(1)a=0.9+0.3=1.2,b=1.2+0.2=1.4;
(2)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:
×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),
所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),
因为5500<5800,
故收费调整后,此运营商在该校投放A品牌共享单车不能获利.
【点评】考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.
20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.
类别
A
B
C
D
E
节目类型
新闻
体育
动画
娱乐
戏曲
人数
12
30
m
54
9
请你根据以上的信息,回答下列问题:
(1)被调查学生中,最喜爱体育节目的有 人,这些学生数占被调查总人数的百分比为 %.
(2)被调查学生的总数为 人,统计表中m的值为 ,统计图中n的值为 .
(3)在统计图中,E类所对应扇形的圆心角的度数为 .
(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.
【考点】VB:扇形统计图;V5:用样本估计总体;VA:统计表.
【专题】解答题
【难度】难
【分析】(1)观察图表休息即可解决问题;
(2)根据百分比=,计算即可;
(3)根据圆心角=360°×百分比,计算即可;
(4)用样本估计总体的思想解决问题即可;
【解答】解:(1)最喜爱体育节目的有 30人,这些学生数占被调查总人数的百分比为 20%.
故答案为30,20.
(2)总人数=30÷20%=150人,
m=150﹣12﹣30﹣54﹣9=45,
n%=×100%=36%,即n=36,
故答案为150,45,36.
(3)E类所对应扇形的圆心角的度数=360°×=21.6°.
故答案为21.6°
(4)估计该校最喜爱新闻节目的学生数为2000×=160人.
答:估计该校最喜爱新闻节目的学生数为160人.
【点评】本题考查统计表、扇形统计图、样本估计总体等知识没解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
21.为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
某校九年级50名学生跳高测试成绩的频数表
组别(m)
频数
1.09~1.19
8
1.19~1.29
12
1.29~1.39
A
1.39~1.49
10
(1)求a的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.
【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.
【专题】解答题
【难度】难
【分析】(1)利用总人数50减去其它组的人数即可求得a的值;
(2)利用总人数乘以对应的比例即可求解.
【解答】解:(1)a=50﹣8﹣12﹣10=20,
;
(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).
【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.
22.某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:
(1)求n的值;
(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.
【考点】V8:频数(率)分布直方图;V5:用样本估计总体.
【专题】解答题
【难度】难
【分析】(1)将各频数相加即可;
(2)先计算不足7小时(即最后两组:D和E组),两组的百分比,与总人数600的积就是结果.
【解答】解:(1)n=12+24+15+6+3=60;
(2)(6+3)÷60×600=90,
答:估计该年级600名学生中睡眠时长不足7小时的人数为90人.
【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
23.为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:
睡眠情况分段情况如下
组别
睡眠时间x(小时)
A
4.5≤x<5.5
B
5.5≤x<6.5
C
6.5≤x<7.5
D
7.5≤x<8.5
E
8.5≤x<9.5
根据图表提供的信息,回答下列问题:
(1)直接写出统计图中a的值 ;
(2)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?
【考点】X2:可能性的大小;V7:频数(率)分布表;VB:扇形统计图;VC:条形统计图.
【专题】解答题
【难度】难
【分析】(1)根据扇形统计图可以求得a的值;
(2)根据统计图中的数据可以求得该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性;
【解答】解:(1)a=1﹣10%﹣25%﹣35%﹣25%=5%,
即统计图中a的值是5%;
(2)八年级抽到的学生为睡眠严重不足的可能性为:=,
九年级抽到的学生为睡眠严重不足的可能性为:5%+25%=30%=0.3;
【点评】本题考查条形统计图、扇形统计图、可能性,解题的关键是明确题意,利用数形结合的思想解答.
24.随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:
(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)
请依据统计结果回答以下问题:
(1)试求进行该试验的车辆数;
(2)请补全频数分布直方图;
(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km以上?
【考点】V8:频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图.
【专题】解答题
【难度】难
【分析】(1)根据C所占的百分比以及频数,即可得到进行该试验的车辆数;
(2)根据B的百分比,计算得到B的频数,进而得到D的频数,据此补全频数分布直方图;
(3)根据C,D,E所占的百分比之和乘上该市这种型号的汽车的总数,即可得到结果.
【解答】解:(1)进行该试验的车辆数为:9÷30%=30(辆),
(2)B:20%×30=6(辆),
D:30﹣2﹣6﹣9﹣4=9(辆),
补全频数分布直方图如下:
(3)900×=660(辆),
答:该市约有660辆该型号的汽车,在耗油1L的情况下可以行驶13km以上.
【点评】本题主要考查了频数分布直方图以及扇形统计图的运用,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
期中卷(2)
一.选择题
1. 2017年某市将有5万名学生参加中考,为了解这些考生的数学成绩,中考后将从中抽取2000名考生的数学成绩进行统计分析,在这个问题中,下列说法正确的是( )
A.2000名考生是总体的一个样本B.每个考生是个体C.这5万名考生的数学中考成绩的全体是总体D.统计中采用的调查方式是普查
2.为了让学生了解南海,关注南海,某校1500名学生参加了南海有关知识竞赛,成绩记为A、B、C、D四等,从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是( )
A.样本容量是200B.样本中C等所占百分比是10%C.D等所在扇形的圆心角为15°D.估计全校学生成绩为A等大约有900人
3.在一篇文章中,“的”、“地”、“和”三个字共出现100次,已知“的”和“地”的频率之和是0.7,那么“和”字出现的频数是( )
A.28 B.30 C.32 D.34
4.某频数分布直方图中,共有A,B,C,D,E五个小组,频数分别为10,15,25,35,10,则直方图中,长方形高的比为( )
A.2,3,5,7,2 B.1,3,4,5,1 C.2,3,5,6,2 D.2,4,5,4,2
5.下列事件中,是必然事件的为( )
A.明天会下雨B.打开电视机,正在播放动画片C.三角形内角和为180°D.经过一个路口,信号灯刚好是红灯
6.从概率统计的角度解读下列诗词所描述的事件.其中属于确定事件的是( )
A.黄梅时节家家雨,青草池塘处处蛙B.人间四月芳菲尽,山寺桃花始盛开C.水面上秤锤浮,直待黄河彻底枯D.一夜北风紧,开门雪尚飘
7.下列说法正确的是( )
A.在同一年出生的400人中至少有两人的生日相同B.投掷一粒骰子,连投两次点数相同的概率与连投两次点数都为1的概率是相等的C.从一副完整的扑克牌中随机抽取一张牌恰好是红桃K,这是必然事件D.一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是
8.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是( )
A.事件A发生的频率是B.反复大量做这种试验,事件A只发生了7次C.做100次这种试验,事件A一定发生7次D.做100次这种试验,事件A可能发生7次
9.如图是某班50名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )
A.5﹣10元 B.10﹣15元 C.15﹣20元 D.20﹣25元
10.某次考试中,某班级的数学成绩统计图如图.下列说法中:
①得分在70~80分之间的人数最多;
②该班的总人数为40;
③得分在90~100分之间的人数最少;
④该班及格(≥60分)率是65%.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
11.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出( )
A.各项消费金额占消费总金额的百分比B.各项消费的金额C.各项消费金额的增减变化情况D.消费的总金额
12.依据某校九(1)班在体育毕业考试中全班所有学生成绩,制成的频数分布直方图如图(学生成绩取整数),则成绩在21.5﹣24.5这一分数段的频数是( )
A.1 B.4 C.10 D.15
二.填空题
13.为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是 .(填“全面调查”或“抽样调查”)
14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是____ 万元。
15.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为 .
16.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:
通话时间x/min
0<x≤5
5<x≤10
10<x≤15
15<x≤20
频数(通话次数)
20
16
9
5
则通话时间不超过10min的频率为 .
17. “抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个).
18.一个均匀的正六面体的六个面上,有一个面写1,两个面写2,三个面写3,任意投掷一次该六面体,则朝上的一面是3的可能性是_________.
三.解答题
19.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
使用次数
0
1
2
3
4
5(含5次以上)
累计车费
0
0.5
0.9
a
b
1.5
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
使用次数
0
1
2
3
4
5
人数
5
15
10
30
25
15
(1)写出a,b的值;
(2)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.
类别
A
B
C
D
E
节目类型
新闻
体育
动画
娱乐
戏曲
人数
12
30
m
54
9
请你根据以上的信息,回答下列问题:
(1)被调查学生中,最喜爱体育节目的有 人,这些学生数占被调查总人数的百分比为 %.
(2)被调查学生的总数为 人,统计表中m的值为 ,统计图中n的值为 .
(3)在统计图中,E类所对应扇形的圆心角的度数为 .
(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.
21.为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
某校九年级50名学生跳高测试成绩的频数表
组别(m)
频数
1.09~1.19
8
1.19~1.29
12
1.29~1.39
A
1.39~1.49
10
(1)求a的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.
22.某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:
(1)求n的值;
(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.
23.为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:
睡眠情况分段情况如下
组别
睡眠时间x(小时)
A
4.5≤x<5.5
B
5.5≤x<6.5
C
6.5≤x<7.5
D
7.5≤x<8.5
E
8.5≤x<9.5
根据图表提供的信息,回答下列问题:
(1)直接写出统计图中a的值 ;
(2)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?
24.随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:
(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)
请依据统计结果回答以下问题:
(1)试求进行该试验的车辆数;
(2)请补全频数分布直方图;
(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km以上?
答案
一.选择题
1. 2017年某市将有5万名学生参加中考,为了解这些考生的数学成绩,中考后将从中抽取2000名考生的数学成绩进行统计分析,在这个问题中,下列说法正确的是( )
A.2000名考生是总体的一个样本B.每个考生是个体C.这5万名考生的数学中考成绩的全体是总体D.统计中采用的调查方式是普查
【考点】V3:总体、个体、样本、样本容量;V2:全面调查与抽样调查.
【专题】填空题
【难度】易
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【解答】解:A、从中抽取2000名考生的数学成绩是总体的一个样本,故A不符合题意;
B、每个考生的成绩是个体,故B不符合题意;
C、这5万名考生的数学中考成绩的全体是总体,故C符合题意;
D、统计中采取抽样调查,故D不符合题意;
故选:C.
【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
2.为了让学生了解南海,关注南海,某校1500名学生参加了南海有关知识竞赛,成绩记为A、B、C、D四等,从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是( )
A.样本容量是200B.样本中C等所占百分比是10%C.D等所在扇形的圆心角为15°D.估计全校学生成绩为A等大约有900人
【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.
【专题】填空题
【难度】易
【分析】根据条形统计图和扇形统计图提供的数据分别列式计算,再对每一项进行分析即可.
【解答】解:A、=200(名),则样本容量是200,故A不符合题意;
B、样本中C等所占百分比是1﹣60%﹣25%﹣×100%=10%,故B不符合题意;
C、成绩为A的人数是:200×60%=120(人),
成绩为D的人数是200﹣120﹣50﹣20=10(人),
D等所在扇形的圆心角为:360°×=18°,故C符合题意;
D、全校学生成绩为A等大约有1500×60%=900人,故D不符合题意.
故选:C.
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
3.在一篇文章中,“的”、“地”、“和”三个字共出现100次,已知“的”和“地”的频率之和是0.7,那么“和”字出现的频数是( )
A.28 B.30 C.32 D.34
【考点】V6:频数与频率.
【专题】填空题
【难度】易
【分析】根据“的”和“地”的频率之和是0.7,得出“和”字出现的频率是0.3,再根据频数=频率×数据总数,即可得出答案.
【解答】解:“和”字出现的频率是1﹣0.7=0.3,
则“和”字出现的频数是100×0.3=30;
故选B.
【点评】此题考查了频数和频率之间的关系,掌握频率的定义:每个对象出现的次数与总次数的比值(或者百分比)即频数=频率×数据总数是本题的关键.
4.某频数分布直方图中,共有A,B,C,D,E五个小组,频数分别为10,15,25,35,10,则直方图中,长方形高的比为( )
A.2,3,5,7,2 B.1,3,4,5,1 C.2,3,5,6,2 D.2,4,5,4,2
【考点】V8:频数(率)分布直方图.
【专题】填空题
【难度】易
【分析】长方形高的比等于频数的比,据此即可求解.
【解答】解:长方形高的比等于10:15:25:35:10=2:3:5:7:2.
故选A.
【点评】本题考查了频数分布直方图,理解长方形高的比等于频数的比是关键.
5.下列事件中,是必然事件的为( )
A.明天会下雨B.打开电视机,正在播放动画片C.三角形内角和为180°D.经过一个路口,信号灯刚好是红灯
【考点】X1:随机事件.
【专题】填空题
【难度】易
【分析】必然事件就是一定发生的事件,依据定义即可判断.
【解答】解:A、明天可能下雨也可能不下雨,是随机事件;
B、打开电视机可能播动画片也可能不是,是随机事件;
C、三角形的内角和为180°,是必然事件;
D、经过一个路口,可能是红灯也可能不是,是随机事件,
故选:C.
【点评】考查了必然事件的概念.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
6.从概率统计的角度解读下列诗词所描述的事件.其中属于确定事件的是( )
A.黄梅时节家家雨,青草池塘处处蛙B.人间四月芳菲尽,山寺桃花始盛开C.水面上秤锤浮,直待黄河彻底枯D.一夜北风紧,开门雪尚飘
【考点】X1:随机事件.
【专题】填空题
【难度】易
【分析】根据事件发生的可能性大小判断相应事件的类型即可.
【解答】解:A、黄梅时节家家雨,青草池塘处处蛙是随机事件,故A不符合题意;
B、人间四月芳菲尽,山寺桃花始盛开是随机事件,故B不符合题意;
C、水面上秤锤浮,直待黄河彻底枯是不可能事件,故C符合题意;
D、一夜北风紧,开门雪尚飘是随机事件,故D不符合题意;
故选:C.
【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7.下列说法正确的是( )
A.在同一年出生的400人中至少有两人的生日相同B.投掷一粒骰子,连投两次点数相同的概率与连投两次点数都为1的概率是相等的C.从一副完整的扑克牌中随机抽取一张牌恰好是红桃K,这是必然事件D.一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是
【考点】X3:概率的意义.
【专题】填空题
【难度】易
【分析】根据概率的意义以及随机事件和必然事件的定义对各选项分析判断即可得解.
【解答】解:A、在同一年出生的400人中至少有两人的生日相同,正确,故本选项正确;
B、投掷一粒骰子,连投两次点数相同的概率是=,连投两次点数都为1的概率是,不相等,故本选项错误;
C、从一副完整的扑克牌中随机抽取一张牌恰好是红桃K,这是随机事件,故本选项错误;
D、一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是,故本选项错误.
故选A.
【点评】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
8.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是( )
A.事件A发生的频率是B.反复大量做这种试验,事件A只发生了7次C.做100次这种试验,事件A一定发生7次D.做100次这种试验,事件A可能发生7次
【考点】X3:概率的意义.
【专题】填空题
【难度】易
【分析】根据概率的意义,可得事件A发生的概率是,表示事件A可能发生7次,但不是一定发生7次,或者只发生了7次,也不表示事件A发生的频率是,据此判断即可.
【解答】解:∵事件A发生的概率是,不表示事件A发生的频率是,
∴选项A不正确;∵事件A发生的概率是,不表示事件A只发生了7次,可能比7次多,也有可能比7次少,
∴选项B不正确;
∵事件A发生的概率是,不表示事件A一定发生7次,
∴选项C不正确;
∵事件A发生的概率是,表示事件A可能发生7次,
∴选项D正确.
故选:D.
【点评】此题主要考查了概率的意义,要熟练掌握,解答此题的关键是要明确:一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.
9.如图是某班50名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )
A.5﹣10元 B.10﹣15元 C.15﹣20元 D.20﹣25元
【考点】V8:频数(率)分布直方图.
【专题】填空题
【难度】易
【分析】根据频数分布直方图,可以得到捐款人数最多的一组,本题得以解决.
【解答】解:由频数分布直方图可得,
捐款人数最多的一组是15﹣20元,
故选C.
【点评】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.
10.某次考试中,某班级的数学成绩统计图如图.下列说法中:
①得分在70~80分之间的人数最多;
②该班的总人数为40;
③得分在90~100分之间的人数最少;
④该班及格(≥60分)率是65%.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【考点】V8:频数(率)分布直方图.
【专题】填空题
【难度】易
【分析】根据条形统计图,求出总人数,及格率,得分在70~80分和90~100分之间的人数即可判断.
【解答】解:由条形统计图可知,该班总人数为4+12+14+8+2=40人.
得分在70~80分之间的人数最多,得分在90~100分之间的人数最少,及格率==90%.
故正确的有①②③.
故选C.
【点评】本题考查频率分布直方图、及格率等知识,解题的关键是熟练掌握基本概念,属于基础题,中考常考题型.
11.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出( )
A.各项消费金额占消费总金额的百分比B.各项消费的金额C.各项消费金额的增减变化情况D.消费的总金额
【考点】VB:扇形统计图.
【专题】填空题
【难度】易
【分析】根据题意和扇形统计图可以得到各项消费金额占消费总金额的百分比,从而可以解答本题.
【解答】解:由题意和扇形统计图可得,
从图中可看出各项消费金额占消费总金额的百分比,
故选A.
【点评】本题考查扇形统计图,解题的关键是明确扇形统计图的特点,从中可以得到相关的信息.
12.依据某校九(1)班在体育毕业考试中全班所有学生成绩,制成的频数分布直方图如图(学生成绩取整数),则成绩在21.5﹣24.5这一分数段的频数是( )
A.1 B.4 C.10 D.15
【考点】V8:频数(率)分布直方图.
【专题】填空题
【难度】易
【分析】成绩在21.5﹣24.5这一分数段的频数即学生数,根据直方图即可直接解答.
【解答】解:成绩在21.5﹣24.5这一分数段的频数是10.
故选C.
【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
二.填空题
13.为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是 .(填“全面调查”或“抽样调查”)
【考点】V2:全面调查与抽样调查.
【专题】填空题
【难度】中
【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【解答】解:了调查某市中小学生对“营养午餐”的满意程度,
因为人员多、所费人力、物力和时间较多
所以适合采用的调查方式是抽样调查,
故答案为:抽样调查.
【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是____ 万元。
【考点】VB:扇形统计图.
【专题】填空题
【难度】中
【分析】利用二月份的产值除以对应的百分比求得第一季度的总产值,然后求得平均数.
【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=240(万元),
则该企业第一季度月产值的平均值是×240=80(万元).
故答案是:80.
【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
15.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为 .
【考点】V6:频数与频率.
【专题】填空题
【难度】中
【分析】设被调查的学生人数为x人,则有=0.25,解方程即可.
【解答】解:设被调查的学生人数为x人,
则有=0.25,
解得x=48,
经检验x=48是方程的解.
故答案为48;
【点评】本题考查频数与频率、记住两者的关系是解题的关键,属于基础题.
16.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:
通话时间x/min
0<x≤5
5<x≤10
10<x≤15
15<x≤20
频数(通话次数)
20
16
9
5
则通话时间不超过10min的频率为 .
【考点】V7:频数(率)分布表.
【专题】填空题
【难度】中
【分析】求出第一、二组与总次数的比值即可求解.
【解答】解:通话时间不超过10min的频率为==.
故答案是:.
【点评】本题考查了频率的计算公式,理解频率公式:频率=是关键.
17. “抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个).
【考点】X1:随机事件.
【专题】填空题
【难度】中
【分析】根据事件发生的可能性大小判断相应事件的类型即可.
【解答】解:“抛掷一枚质地均匀的硬币,正面向上”是 随机事件,
故答案为:随机.
【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
18.一个均匀的正六面体的六个面上,有一个面写1,两个面写2,三个面写3,任意投掷一次该六面体,则朝上的一面是3的可能性是_________.
【考点】X2:可能性的大小.
【专题】填空题
【难度】中
【分析】先找出任意投掷一次该六面体所能出现的情况及出现3的情况,再由概率公式即可得出结论.
【解答】解:∵一个均匀的正六面体的六个面上,有一个面写1,两个面写2,三个面写3,
∴任意投掷一次该六面体可能出现6种情况,其中写有3的面有3种,
∴朝上的一面是3的可能性==.
故答案为:.
【点评】本题考查的是可能性的大小,熟记概率公式是解答此题的关键.
三.解答题
19.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
使用次数
0
1
2
3
4
5(含5次以上)
累计车费
0
0.5
0.9
a
b
1.5
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
使用次数
0
1
2
3
4
5
人数
5
15
10
30
25
15
(1)写出a,b的值;
(2)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
【考点】V5:用样本估计总体.
【专题】解答题
【难度】难
【分析】(1)根据收费调整情况列出算式计算即可求解;
(2)先根据平均数的计算公式求出抽取的100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.
【解答】解:(1)a=0.9+0.3=1.2,b=1.2+0.2=1.4;
(2)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:
×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),
所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),
因为5500<5800,
故收费调整后,此运营商在该校投放A品牌共享单车不能获利.
【点评】考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.
20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.
类别
A
B
C
D
E
节目类型
新闻
体育
动画
娱乐
戏曲
人数
12
30
m
54
9
请你根据以上的信息,回答下列问题:
(1)被调查学生中,最喜爱体育节目的有 人,这些学生数占被调查总人数的百分比为 %.
(2)被调查学生的总数为 人,统计表中m的值为 ,统计图中n的值为 .
(3)在统计图中,E类所对应扇形的圆心角的度数为 .
(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.
【考点】VB:扇形统计图;V5:用样本估计总体;VA:统计表.
【专题】解答题
【难度】难
【分析】(1)观察图表休息即可解决问题;
(2)根据百分比=,计算即可;
(3)根据圆心角=360°×百分比,计算即可;
(4)用样本估计总体的思想解决问题即可;
【解答】解:(1)最喜爱体育节目的有 30人,这些学生数占被调查总人数的百分比为 20%.
故答案为30,20.
(2)总人数=30÷20%=150人,
m=150﹣12﹣30﹣54﹣9=45,
n%=×100%=36%,即n=36,
故答案为150,45,36.
(3)E类所对应扇形的圆心角的度数=360°×=21.6°.
故答案为21.6°
(4)估计该校最喜爱新闻节目的学生数为2000×=160人.
答:估计该校最喜爱新闻节目的学生数为160人.
【点评】本题考查统计表、扇形统计图、样本估计总体等知识没解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
21.为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
某校九年级50名学生跳高测试成绩的频数表
组别(m)
频数
1.09~1.19
8
1.19~1.29
12
1.29~1.39
A
1.39~1.49
10
(1)求a的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.
【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.
【专题】解答题
【难度】难
【分析】(1)利用总人数50减去其它组的人数即可求得a的值;
(2)利用总人数乘以对应的比例即可求解.
【解答】解:(1)a=50﹣8﹣12﹣10=20,
;
(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).
【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.
22.某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:
(1)求n的值;
(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.
【考点】V8:频数(率)分布直方图;V5:用样本估计总体.
【专题】解答题
【难度】难
【分析】(1)将各频数相加即可;
(2)先计算不足7小时(即最后两组:D和E组),两组的百分比,与总人数600的积就是结果.
【解答】解:(1)n=12+24+15+6+3=60;
(2)(6+3)÷60×600=90,
答:估计该年级600名学生中睡眠时长不足7小时的人数为90人.
【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
23.为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:
睡眠情况分段情况如下
组别
睡眠时间x(小时)
A
4.5≤x<5.5
B
5.5≤x<6.5
C
6.5≤x<7.5
D
7.5≤x<8.5
E
8.5≤x<9.5
根据图表提供的信息,回答下列问题:
(1)直接写出统计图中a的值 ;
(2)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?
【考点】X2:可能性的大小;V7:频数(率)分布表;VB:扇形统计图;VC:条形统计图.
【专题】解答题
【难度】难
【分析】(1)根据扇形统计图可以求得a的值;
(2)根据统计图中的数据可以求得该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性;
【解答】解:(1)a=1﹣10%﹣25%﹣35%﹣25%=5%,
即统计图中a的值是5%;
(2)八年级抽到的学生为睡眠严重不足的可能性为:=,
九年级抽到的学生为睡眠严重不足的可能性为:5%+25%=30%=0.3;
【点评】本题考查条形统计图、扇形统计图、可能性,解题的关键是明确题意,利用数形结合的思想解答.
24.随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:
(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)
请依据统计结果回答以下问题:
(1)试求进行该试验的车辆数;
(2)请补全频数分布直方图;
(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km以上?
【考点】V8:频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图.
【专题】解答题
【难度】难
【分析】(1)根据C所占的百分比以及频数,即可得到进行该试验的车辆数;
(2)根据B的百分比,计算得到B的频数,进而得到D的频数,据此补全频数分布直方图;
(3)根据C,D,E所占的百分比之和乘上该市这种型号的汽车的总数,即可得到结果.
【解答】解:(1)进行该试验的车辆数为:9÷30%=30(辆),
(2)B:20%×30=6(辆),
D:30﹣2﹣6﹣9﹣4=9(辆),
补全频数分布直方图如下:
(3)900×=660(辆),
答:该市约有660辆该型号的汽车,在耗油1L的情况下可以行驶13km以上.
【点评】本题主要考查了频数分布直方图以及扇形统计图的运用,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
相关资料
更多