所属成套资源:2025年中考数学一轮复习分层精练 (2份,原卷版+解析版)
2025年中考数学一轮复习分层精练专题21 平行四边形与多边形(2份,原卷版+解析版)
展开
这是一份2025年中考数学一轮复习分层精练专题21 平行四边形与多边形(2份,原卷版+解析版),文件包含2025年中考数学一轮复习分层精练专题21平行四边形与多边形原卷版doc、2025年中考数学一轮复习分层精练专题21平行四边形与多边形解析版doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
1.(2022•广东)如图,在▱ABCD中,一定正确的是( )
A.AD=CDB.AC=BDC.AB=CDD.CD=BC
【答案】C
【解答】解:∵四边形ABCD是平行四边形,
∴AB=CD,
故选:C.
2.(2022•河北)依据所标数据,下列一定为平行四边形的是( )
A.B.
C.D.
【答案】D
【解答】解:A、80°+110°≠180°,故A选项不符合条件;
B、只有一组对边平行不能确定是平行四边形,故B选项不符合题意;
C、不能判断出任何一组对边是平行的,故C选项不符合题意;
D、有一组对边平行且相等的四边形是平行四边形,故D选项符合题意;
故选:D.
3.(2022•无锡)雪花、风车……展示着中心对称的美,利用中心对称,可以探索并证明图形的性质.请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )
A.扇形B.平行四边形C.等边三角形D.矩形
【答案】B
【解答】解:A.扇形是轴对称图形,不是中心对称图形,故此选项不合题意;
B.平行四边形不一定是轴对称图形,是中心对称图形,故此选项符合题意;
C.等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;
D.矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;
故选:B.
4.(2022•乐山)如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为E,过点B作BF⊥AC,垂足为F.若AB=6,AC=8,DE=4,则BF的长为( )
A.4B.3C.D.2
【答案】B
【解答】解:在平行四边形ABCD中,S△ABC=S平行四边形ABCD,
∵DE⊥AB,BF⊥AC,
∴,
∵AB=6,AC=8,DE=4,
∴8BF=6×4,
解得BF=3,
故选:B.
5.(2022•嘉兴)如图,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是( )
A.8B.16C.24D.32
【答案】B
【解答】解:∵EF∥AC,GF∥AB,
∴四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,
∵AB=AC,
∴∠B=∠C,
∴∠B=∠EFB,∠GFC=∠C,
∴EB=EF,FG=GC,
∵四边形AEFG的周长=AE+EF+FG+AG,
∴四边形AEFG的周长=AE+EB+GC+AG=AB+AC,
∵AB=AC=8,
∴四边形AEFG的周长=AB+AC=8+8=16,
故选:B.
6.(2022•南充)如图,在正五边形ABCDE中,以AB为边向内作正△ABF,则下列结论错误的是( )
A.AE=AFB.∠EAF=∠CBFC.∠F=∠EAFD.∠C=∠E
【答案】C
【解答】解:在正五边形ABCDE中内角和:180°×3=540°,
∴∠C=∠D=∠E=∠EAB=∠ABC=540°÷5=108°,
∴D不符合题意;
∵以AB为边向内作正△ABF,
∴∠FAB=∠ABF=∠F=60°,AF=AB=FB,
∵AE=AB,
∴AE=AF,∠EAF=∠FBC=48°,
∴A、B不符合题意;
∴∠F≠∠EAF,
∴C符合题意;
故选:C.
7.(2021•扬州)如图,点A、B、C、D、E在同一平面内,连接AB、BC、CD、DE、EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=( )
A.220°B.240°C.260°D.280°
【答案】D
【解答】解:连接BD,
∵∠BCD=100°,
∴∠CBD+∠CDB=180°﹣100°=80°,
∴∠A+∠ABC+∠E+∠CDE=360°﹣∠CBD﹣∠CDB=360°﹣80°=280°,
故选:D.
8.(2021•河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )
A.甲、乙、丙都是B.只有甲、乙才是
C.只有甲、丙才是D.只有乙、丙才是
【答案】A
【解答】解:方案甲中,连接AC,如图所示:
∵四边形ABCD是平行四边形,O为BD的中点,
∴OB=OD,OA=OC,
∵BN=NO,OM=MD,
∴NO=OM,
∴四边形ANCM为平行四边形,方案甲正确;
方案乙中:
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABN=∠CDM,
∵AN⊥BD,CM⊥BD,
∴AN∥CM,∠ANB=∠CMD,
在△ABN和△CDM中,
,
∴△ABN≌△CDM(AAS),
∴AN=CM,
又∵AN∥CM,
∴四边形ANCM为平行四边形,方案乙正确;
方案丙中:∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,AB=CD,AB∥CD,
∴∠ABN=∠CDM,
∵AN平分∠BAD,CM平分∠BCD,
∴∠BAN=∠DCM,
在△ABN和△CDM中,
,
∴△ABN≌△CDM(ASA),
∴AN=CM,∠ANB=∠CMD,
∴∠ANM=∠CMN,
∴AN∥CM,
∴四边形ANCM为平行四边形,方案丙正确;
故选:A.
9.(2022•大庆)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在E处.若∠1=56°,∠2=42°,则∠A的度数为( )
A.108°B.109°C.110°D.111°
【答案】C
【解答】解:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABD=∠CDB,
由折叠的性质得:∠EBD=∠ABD,
∴∠ABD=∠CDB=∠EBD,
∵∠1=∠CDB+∠EBD=56°,
∴∠ABD=∠CDB=28°,
∴∠A=180°﹣∠2﹣∠ABD=180°﹣42°﹣28°=110°,
故选:C.
10.(2020•玉林)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.
求证:DE∥BC,且DE=BC.
证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF是平行四边形,接着以下是排序错误的证明过程:
①∴DFBC;
②∴CFAD.即CFBD;
③∴四边形DBCF是平行四边形;
④∴DE∥BC,且DE=BC.
则正确的证明顺序应是:( )
②→③→①→④B.②→①→③→④
C.①→③→④→②D.①→③→②→④
【答案】A
【解答】证明:延长DE到点F,使EF=DE,连接FC,DC,AF,
∵点D,E分别是△ABC的边AB,AC的中点,
∴AD=BD,AE=EC,
∴四边形ADCF是平行四边形,
∴CFAD.即CFBD,
∴四边形DBCF是平行四边形,
∴DFBC,
∴DE∥BC,且DE=BC.
∴正确的证明顺序是②→③→①→④,
故选:A.
11.(2019•广州)如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是( )
A.EH=HG
B.四边形EFGH是平行四边形
C.AC⊥BD
D.△ABO的面积是△EFO的面积的2倍
【答案】B
【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,
∴EH=AD=2,HG=AB=1,
∴EH≠HG,故选项A错误;
∵E,F,G,H分别是AO,BO,CO,DO的中点,
∴EH=,
∴四边形EFGH是平行四边形,故选项B正确;
由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;
∵点E、F分别为OA和OB的中点,
∴EF=,EF∥AB,
∴△OEF∽△OAB,
∴,
即△ABO的面积是△EFO的面积的4倍,故选项D错误,
故选:B.
12.(2022•桂林)如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.
(1)求证:BE=DF;
(2)求证:△ABE≌△CDF.
【解答】证明:(1)∵BF=DE,BF﹣EF=DE﹣EF,
∴BE=DF;
(2)∵四边形ABCD为平行四边形,
∴AB=CD,且AB∥CD,
∴∠ABE=∠CDF,
在△ABE和△CDF中,
.
∴△ABE≌△CDF(SAS).
13.(2020•柳州)如图,已知▱ABCD的对角线AC、BD相交于点O,AD=12,BD=10,AC=26.
(1)求△ADO的周长;
(2)求证:△ADO是直角三角形.
【解答】解:(1)∵四边形ABCD是平行四边形,
∴对角线AC与BD相互平分,
∴OA=OC=AC,OB=OD=BD,
∵AC=26,BD=10,
∴OA=13,OD=5,
∵AD=12,
∴△AOD的周长=5+12+13=30;
(2)由(1)知 OA=13,OD=5,AD=12,
∵52+ 122=132 ,
∴在△AOD中,AD2+DO2=AO2 ,
∴△AOD是直角三角形.
14.(2022•温州)如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.
(1)求证:四边形DEFG是平行四边形.
(2)当AD=5,tan∠EDC=时,求FG的长.
【解答】(1)证明:∵E,F分别是AC,AB的中点,
∴EF是△ABC的中位线,
∴EF∥BC,
∴∠EFO=∠GDO,
∵O是DF的中点,
∴OF=OD,
在△OEF和△OGD中,
,
∴△OEF≌△OGD(ASA),
∴EF=GD,
∴四边形DEFG是平行四边形.
(2)解:∵AD⊥BC,
∴∠ADC=90°,
∵E是AC的中点,
∴DE=AC=CE,
∴∠C=∠EDC,
∴tanC==tan∠EDC=,
即=,
∴CD=2,
∴AC===,
∴DE=AC=,
由(1)可知,四边形DEFG是平行四边形,
∴FG=DE=.
15.(2022•无锡)如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD上,∠EBA=60°,则的值是( )
A.B.C.D.
【答案】D
【解答】解:如图,过点B作BH⊥AD于H,
设∠ADB=x,
∵四边形ABCD是平行四边形,
∴BC∥AD,∠ADC=∠ABC=105°,
∴∠CBD=∠ADB=x,
∵AD=BD,
∴∠DBA=∠DAB=,
∴x+=105°,
∴x=30°,
∴∠ADB=30°,∠DAB=75°,
∵BH⊥AD,
∴BD=2BH,DH=BH,
∵∠EBA=60°,∠DAB=75°,
∴∠AEB=45°,
∴∠AEB=∠EBH=45°,
∴EH=BH,
∴DE=BH﹣BH=(﹣1)BH,
∵AB===(﹣)BH=CD,
∴=,
故选:D.
16.(2022•毕节市)如图1,在四边形ABCD中,AC和BD相交于点O,AO=CO,∠BCA=∠CAD.
(1)求证:四边形ABCD是平行四边形;
(2)如图2,E,F,G分别是BO,CO,AD的中点,连接EF,GE,GF,若BD=2AB,BC=15,AC=16,求△EFG的周长.
【解答】(1)证明:∵∠BCA=∠CAD,
∴AD∥BC,
在△AOD与△COB中,
,
∴△AOD≌△COB(ASA),
∴AD=BC,
∴四边形ABCD是平行四边形;
(2)解:连接DF,
∵四边形ABCD是平行四边形,
∴AD=BC=15,AB=CD,AD∥BC,BD=2OD,OA=OC=AC=8,
∵BD=2AB,
∴AB=OD,
∴DO=DC,
∵点F是OC的中点,
∴OF=OC=4,DF⊥OC,
∴AF=OA+OF=12,
在Rt△AFD中,DF===9,
∴点G是AD的中点,∠AFD=90°,
∴DG=FG=AD=7.5,
∵点E,点F分别是OB,OC的中点,
∴EF是△OBC的中位线,
∴EF=BC=7.5,EF∥BC,
∴EF=DG,EF∥AD,
∴四边形GEFD是平行四边形,
∴GE=DF=9,
∴△EFG的周长=GE+GF+EF=9+7.5+7.5=24,
∴△EFG的周长为24.
相关试卷
这是一份2025年中考数学一轮复习分层精练专题01 实数(2份,原卷版+解析版),文件包含2025年中考数学一轮复习分层精练专题01实数原卷版doc、2025年中考数学一轮复习分层精练专题01实数解析版doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份中考数学一轮复习题型归纳精练专题21 一次函数(2份,原卷版+解析版),文件包含中考数学一轮复习题型归纳精练专题21一次函数原卷版docx、中考数学一轮复习题型归纳精练专题21一次函数解析版docx等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。
这是一份中考数学一轮复习考点题型归纳与分层练习专题25 多边形及内角和(2份,原卷版+解析版),文件包含中考数学一轮复习考点题型归纳与分层练习专题25多边形及内角和原卷版doc、中考数学一轮复习考点题型归纳与分层练习专题25多边形及内角和解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。