所属成套资源:2025年中考数学一轮复习分层精练 (2份,原卷版+解析版)
2025年中考数学一轮复习分层精练专题27 与圆有关的计算(2份,原卷版+解析版)
展开
这是一份2025年中考数学一轮复习分层精练专题27 与圆有关的计算(2份,原卷版+解析版),文件包含2025年中考数学一轮复习分层精练专题27与圆有关的计算原卷版doc、2025年中考数学一轮复习分层精练专题27与圆有关的计算解析版doc等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
1.(2022•丹东)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则的长为( )
A.6πB.2πC.πD.π
【答案】D
【解答】解:∵直径AB=6,
∴半径OB=3,
∵圆周角∠A=30°,
∴圆心角∠BOC=2∠A=60°,
∴的长是=π,
故选:D.
2.(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是( )
A.πB.πC.πD.π
【答案】B
【解答】解:∵CA=CB,CD⊥AB,
∴AD=DB=AB′.
∴∠AB′D=30°,
∴α=30°,
∵AC=4,
∴AD=AC•cs30°=4×=2,
∴,
∴的长度l==π.
故选:B.
3.(2021•广州)一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若∠ACB=60°,则劣弧AB的长是( )
A.8πcmB.16πcmC.32πcmD.192πcm
【答案】B
【解答】解:由题意得:CA和CB分别与⊙O相切于点A和点B,
∴OA⊥CA,OB⊥CB,
∴∠OAC=∠OBC=90°,
∵∠ACB=60°,
∴∠AOB=120°,
∴=16π(cm),
故选:B.
4.(2021•广安)如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走( )米.
A.6π﹣6B.6π﹣9C.12π﹣9D.12π﹣18
【答案】D
【解答】解:作OC⊥AB于C,如图,
则AC=BC,
∵OA=OB,∠AOB=120°,
∴∠A=∠B=(180°﹣∠AOB)=30°,
在Rt△AOC中,OC=OA=9米,
AC==米,
∴AB=2AC=米,
又∵的长=米,
∴走便民路比走观赏路少走()米,
故选:D.
5.(2022•资阳)如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与交于点C,连接AC.若OA=2,则图中阴影部分的面积是( )
A.B.C.D.
【答案】B
【解答】解:连接CO,直线l与AO交于点D,如图所示,
∵扇形AOB中,OA=2,
∴OC=OA=2,
∵点A与圆心O重合,
∴AD=OD=1,CD⊥AO,
∴OC=AC,
∴OA=OC=AC=2,
∴△OAC是等边三角形,
∴∠COD=60°,
∵CD⊥OA,
∴CD===,
∴阴影部分的面积为:=﹣,
故选:B.
6.(2021•宁夏)如图,已知⊙O的半径为1,AB是直径,分别以点A、B为圆心,以AB的长为半径画弧.两弧相交于C、D两点,则图中阴影部分的面积是( )
A.B.C.D.
【答案】A
【解答】解:连接BC,如图,
由作法可知AC=BC=AB=2,
∴△ACB为等边三角形,
∴∠BAC=60°,
∴S弓形BC=S扇形BAC﹣S△ABC,
∴图中阴影部分的面积=4S弓形BC+2S△ABC﹣S⊙O
=4(S扇形BAC﹣S△ABC)+2S△ABC﹣S⊙O
=4S扇形BAC﹣2S△ABC﹣S⊙O
=4×﹣2××22﹣π×12
=π﹣2.
故选:A.
7.(2021•兴安盟)如图,两个半径长均为的直角扇形的圆心分别在对方的圆弧上,扇形CFD的圆心C是的中点,且扇形CFD绕着点C旋转,半径AE、CF交于点G,半径BE、CD交于点H,则图中阴影面积等于( )
A.B.C.π﹣1D.π﹣2
【答案】D
【解答】解:两扇形的面积和为:=π,
过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,
则四边形EMCN是矩形,
∵点C是的中点,
∴EC平分∠AEB,
∴CM=CN,
∴矩形EMCN是正方形,
∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,
∴∠MCG=∠NCH,
在△CMG与△CNH中,
,
∴△CMG≌△CNH(ASA),
∴中间空白区域面积相当于对角线是的正方形面积,
∴空白区域的面积为:××=1,
∴图中阴影部分的面积=两个扇形面积和﹣2个空白区域面积的和=π﹣2.
故选:D.
8.(2021•柳州)如图所示,点A,B,C对应的刻度分别为1,3,5,将线段CA绕点C按顺时针方向旋转,当点A首次落在矩形BCDE的边BE上时,记为点A′,则此时线段CA扫过的图形的面积为( )
A.4B.6C.D.
【答案】D
【解答】解:由题意,知AC=4,BC=4﹣2=2,∠A′BC=90°.
由旋转的性质,得A′C=AC=4.
在Rt△A′BC中,cs∠ACA′==.
∴∠ACA′=60°.
∴扇形ACA′的面积为=π.
即线段CA扫过的图形的面积为π.
故选:D.
9.(2022•济宁)已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是( )
A.96πcm2B.48πcm2C.33πcm2D.24πcm2
【答案】D
【解答】解:∵底面圆的直径为6cm,
∴底面圆的半径为3cm,
∴圆锥的侧面积=×8×2π×3=24πcm2.
故选:D.
10.(2022•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )
A.90°B.100°C.120°D.150°
【答案】C
【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,
设圆心角的度数是n度.
则=2π,
解得:n=120.
故选:C.
11.(2022•无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为( )
A.12πB.15πC.20πD.24π
【答案】C
【解答】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,
∴AB===5,
由已知得,母线长l=5,半径r为4,
∴圆锥的侧面积是S=πlr=5×4×π=20π.
故选:C.
12.(2022•绵阳)如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm).电镀时,如果每平方米用锌0.1千克,电镀1000个这样的锚标浮筒,需要多少千克锌?(π的值取3.14)( )
A.282.6B.282600000C.357.96D.357960000
【答案】A
【解答】解:由图形可知圆锥的底面圆的半径为0.3m,
圆锥的高为0.4m,
则圆锥的母线长为:=0.5m.
∴圆锥的侧面积S1=π×0.3×0.5=0.15π(m2),
∵圆柱的高为1m.
圆柱的侧面积S2=2π×0.3×1=0.6π(m2),
∴浮筒的表面积=2S1+S2=0.9π(m2),
∵每平方米用锌0.1kg,
∴一个浮筒需用锌:0.9π×0.1kg,
∴1000个这样的锚标浮筒需用锌:1000×0.9π×0.1=90π≈282.6(kg).
故选:A.
13.(2022•贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”,“沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm,高是6cm;圆柱体底面半径是3cm,液体高是7cm.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )
A.2cmB.3cmC.4cmD.5cm
【答案】B
【解答】解:如图:
∵圆锥体底面半径是6cm,高是6cm,
∴△ABC是等腰直角三角形,
∴△CDE也是等腰直角三角形,即CD=DE,
由已知可得:液体的体积为π×32×7=63π(cm3),圆锥的体积为π×62×6=72π(cm3),
∴计时结束后,圆锥中没有液体的部分体积为72π﹣63π=9π(cm3),
设计时结束后,“沙漏”中液体的高度AD为xcm,则CD=DE=(6﹣x)cm,
∴π•(6﹣x)2•(6﹣x)=9π,
∴(6﹣x)3=27,
解得x=3,
∴计时结束后,“沙漏”中液体的高度为3cm,
故选:B.
14.(2022•绵阳)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,﹣3),则顶点C的坐标为( )
A.(2﹣2,3)B.(0,1+2)C.(2﹣,3)D.(2﹣2,2+)
【答案】A
【解答】解:如图,连接BD交CF于点M,则点B(2,1),
在Rt△BCM中,BC=4,∠BCM=×120°=60°,
∴CM=BC=2,BM=BC=2,
∴点C的横坐标为﹣(2﹣2)=2﹣2,纵坐标为1+2=3,
∴点C的坐标为(2﹣2,3),
故选:A.
15.(2022•内江)如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为( )
A.4,B.3,πC.2,D.3,2π
【答案】D
【解答】解:连接OB、OC,
∵六边形ABCDEF为正六边形,
∴∠BOC==60°,
∵OB=OC,
∴△BOC为等边三角形,
∴BC=OB=6,
∵OM⊥BC,
∴BM=BC=3,
∴OM===3,
的长为:=2π,
故选:D.
16.(2022•青海)如图,从一个腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,则此扇形的弧长为 cm.
【答案】20π
【解答】解:过O作OE⊥AB于E,当扇形的半径为OE时扇形OCD最大,
∵OA=OB=60cm,∠AOB=120°,
∴∠A=∠B=30°,
∴OE=OA=30cm,
∴弧CD的长==20πcm,
故答案为:20π.
17.(2022•广州)如图,在△ABC中,AB=AC,点O在边AC上,以O为圆心,4为半径的圆恰好过点C,且与边AB相切于点D,交BC于点E,则劣弧的长是 .(结果保留π)
【答案】2π
【解答】解:连接OD,OE,
∵OC=OE,
∴∠OCE=∠OEC,
∵AB=AC,
∴∠ABC=∠ACB,
∵∠A+∠ABC+∠ACB=∠COE+∠OCE+∠OEC,
∴∠A=∠COE,
∵圆O与边AB相切于点D,
∴∠ADO=90°,
∴∠A+∠AOD=90°,
∴∠COE+∠AOD=90°,
∴∠DOE=180°﹣(∠COE+∠AOD)=90°,
∴劣弧的长是=2π.
故答案为:2π.
18.(2022•河南)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为 .
【答案】+
【解答】解:如图,设O′A′交于点T,连接OT.
∵OT=OB,OO′=O′B,
∴OT=2OO′,
∵∠OO′T=90°,
∴∠O′TO=30°,∠TOO′=60°,
∴S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)
=﹣(﹣×1×)
=+.
故答案为:+.
19.(2022•广元)如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为 .
【答案】
【解答】解:如图,过点O作AB的垂线并延长,垂足为C,交⊙O于点D,连结AO,AD,
根据垂径定理得:AC=BC=AB=,
∵将⊙O沿弦AB折叠,恰经过圆心O,
∴OC=CD=r,
∴OC=OA,
∴∠OAC=30°,
∴∠AOD=60°,
∵OA=OD,
∴△AOD是等边三角形,
∴∠D=60°,
在Rt△AOC中,AC2+OC2=OA2,
∴()2+(r)2=r2,
解得:r=2,
∵AC=BC,∠OCB=∠ACD=90°,OC=CD,
∴△ACD≌△BCO(SAS),
∴阴影部分的面积=S扇形ADO=×π×22=.
故答案为:.
20.(2022•重庆)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为 .(结果不取近似值)
【答案】
【解答】解:如图,连接BD交AC于点O,则AC⊥BD,
∵四边形ABCD是菱形,∠BAD=60°,
∴∠BAC=∠ACD=30°,AB=BC=CD=DA=2,
在Rt△AOB中,AB=2,∠BAO=30°,
∴BO=AB=1,AO=AB=,
∴AC=2OA=2,BD=2BO=2,
∴S菱形ABCD=AC•BD=2,
∴S阴影部分=S菱形ABCD﹣2S扇形ADE
=2﹣
=,
故答案为:.
21.(2022•聊城)若一个圆锥体的底面积是其表面积的,则其侧面展开图圆心角的度数为 .
【答案】120°
【解答】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n°.
由题意得S底面=πr2,
l底面周长=2πr,
∵这个圆锥体的底面积是其表面积的,
∴S扇形=3S底面=3πr2,
l扇形弧长=1底面=2πr.
由S扇形=l扇形弧长×R得3πr2=×2πr×R,
故R=3r.
由l扇形弧长=得:
2πr=,
解得n=120.
故答案为:120°.
22.(2022•黑龙江)已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为 .
【答案】26+10π
【解答】解:∵圆锥的底面半径是5,高是12,
∴圆锥的母线长为13,
∴这个圆锥的侧面展开图的周长=2×13+2π×5=26+10π.
故答案为26+10π.
23.(2022•贡井区模拟)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是 .
【答案】(6﹣π)
【解答】解:6个月牙形的面积之和=3π﹣(22π﹣6××2×)=6﹣π,
故答案为:6﹣π.
24.(2022•青海)如图,AB是⊙O的直径,AC是⊙O的弦,AD平分∠CAB交⊙O于点D,过点D作⊙O的切线EF,交AB的延长线于点E,交AC的延长线于点F.
(1)求证:AF⊥EF;
(2)若CF=1,AC=2,AB=4,求BE的长.
【解答】(1)证明:连接OD,如图:
∵AD平分∠CAB,
∴∠FAD=∠OAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠FAD=∠ODA,
∴OD∥AF,
∵EF是⊙O的切线,OD是⊙O的半径,
∴OD⊥EF,
∴AF⊥EF;
(2)解:连接CO并延长交⊙O于K,连接DK,DC,如图:
∵CK是⊙O的直径,
∴∠CDK=90°,
∴∠K+∠DCK=90°,
∵OD⊥EF,
∴∠ODF=90°,即∠ODC+∠CDF=90°,
∵OC=OD,
∴∠DCK=∠ODC,
∴∠K=∠CDF,
∵=,
∴∠FAD=∠K,
∴∠FAD=∠CDF,
∵∠F=∠F,
∴△FAD∽△FDC,
∴=,
∵CF=1,AC=2,
∴FA=CF+AC=3,
∴=,
解得FD=,
在Rt△AFD中,tan∠FAD==,
∴∠FAD=30°,
∵AD平分∠CAB,
∴∠FAE=2∠FAD=60°,
∴AE===6,
∵AB=4,
∴BE=AE﹣AB=6﹣4=2,
答:BE的长为2.
25.(2022•河池)如图,AB是⊙O的直径,E为⊙O上的一点,∠ABE的平分线交⊙O于点C,过点C的直线交BA的延长线于点P,交BE的延长线于点D.且∠PCA=∠CBD.
(1)求证:PC为⊙O的切线;
(2)若PC=2BO,PB=12,求⊙O的半径及BE的长.
【解答】(1)证明:连接OC,
∵BC平分∠ABE,
∴∠ABC=∠CBD,
∵OC=OB,
∴∠ABC=∠OCB,
∵∠PCA=∠CBD,
∴∠PCA=∠OCB,
∵AB是直径,
∴∠ACB=90°,
∴∠ACO+∠OCB=90°,
∴∠PCA+∠ACO=90°,
∴∠PCO=90°,
∴OC⊥PC,
∵OC是半径,
∴PC是⊙O的切线;
(2)解:连接AE,设OB=OC=r,
∵PC=2OB,
∴PC=2r,
∴OP===3r,
∵PB=12,
∴4r=12,
∴r=3,
由(1)可知,∠OCB=∠CBD,
∴OC∥BD,
∴=,∠D=∠PCO=90°,
∴=,
∴BD=4,
∵AB是直径,
∴∠AEB=90°,
∴∠AEB=∠D=90°,
∴AE∥PD,
∴=,
∴=,
∴BE=2.
相关试卷
这是一份中考数学一轮复习题型归纳精练专题16 与圆有关的计算(2份,原卷版+解析版),文件包含中考数学一轮复习题型归纳精练专题16与圆有关的计算原卷版docx、中考数学一轮复习题型归纳精练专题16与圆有关的计算解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份中考数学一轮复习题型归纳训练专题16 与圆有关的计算(2份,原卷版+解析版),文件包含中考数学一轮复习题型归纳训练专题16与圆有关的计算原卷版doc、中考数学一轮复习题型归纳训练专题16与圆有关的计算解析版doc等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份中考数学一轮复习考点题型归纳与分层训练专题31 与圆有关的计算(2份打包,原卷版+解析版),文件包含中考数学一轮复习考点题型归纳与分层训练专题31与圆有关的计算原卷版doc、中考数学一轮复习考点题型归纳与分层训练专题31与圆有关的计算含解析doc等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。