所属成套资源:2024-2025学年青岛版八年级上册数学各单元卷
青岛版第4章《数据分析》单元测试4-2024-2025学年青岛版八年级上册数学试题
展开
这是一份青岛版第4章《数据分析》单元测试4-2024-2025学年青岛版八年级上册数学试题,共4页。
第4章 数据分析单元测试一、选择题(本大题共10小题,每小题4分,共40分)1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( ).A.40 B.42 C.38 D.22.一城市准备选购一千株高度大约为2 m的某种风景树来进行街道绿化,有四个苗圃生产基地投标(单株树的价格都一样).采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购( ).A.甲苗圃的树苗 B.乙苗圃的树苗C.丙苗圃的树苗 D.丁苗圃的树苗3.衡量样本和总体的波动大小的特征数是( ).A.平均数 B.方差 C.众数 D.中位数4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则该射手射中环数的中位数和众数分别为( ).A.8,9 B.8,8C.8.5,8 D.8.5,95.对于数据3,3,2,3,6,3,10,3,6,3,2.有下列说法:①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的说法有( ).A.1个 B.2个 C.3个 D.4个6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分输入汉字的个数经统计计算后结果如下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同; (2)乙班优秀的人数多于甲班优秀的人数;(每分输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( ).A.(1)(2)(3) B.(1)(2)C.(1)(3) D.(2)(3) 7.某学校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),则学期总评成绩优秀的是( ).A.甲 B.乙、丙 C.甲、乙 D.甲、丙8.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:eq \x\to(x)甲=eq \x\to(x)乙=80,seq \o\al(2,甲)=240,seq \o\al(2,乙)=180,则成绩较为稳定的班级是( ).A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定9.期中考试后,学习小组长算出全组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M∶N为( ).A.eq \f(5,6) B.1 C.eq \f(6,5) D.210.下列说法错误的是( ).A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个二、填空题(本大题共5小题,每小题5分,共25分)11.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是__________,众数是__________.12.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是____________.13.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1∶4∶3的比例确定测试总分.已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为__________.14.如果样本方差s2=eq \f(1,4)[(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2],那么这个样本的平均数为__________,样本容量为________.15.已知x1,x2,x3的平均数eq \x\to(x)=10,方差s2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.三、解答题(本大题共3小题,共35分)16.(10分)图①,②分别是根据某地近两年6月上旬日平均气温情况绘制的折线统计图,通过观察图表回答:去年6月上旬①今年6月上旬②(1)该地这两年6月上旬日平均气温分别是多少?(2)该地这两年6月上旬日平均气温的极差分别是多少?由此可以判断哪一年6月上旬气温比较稳定?分析:折线图能直观地反映数据的变化趋势,能比较容易地看出变动范围,求出极差,运用时还要注意观察,通过纵横坐标的交点寻找所需要的数据信息,根据信息和题目要求作出正确分析.观察图可知去年6月上旬的日平均气温(单位:℃)分别是:24,30,29,24,23,26,27,26,30,26.由图可知今年6月上旬的日平均气温(单位 ℃)分别是:24,26,25,26,24,26,27,26,27,26.然后求这两年的平均气温及极差. 17.(10分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数如下:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?18.(15分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位: cm).并且数据15,16,16,14,14,15的方差,数据11,15,18,17,10,19的方差)参考答案1答案:B 点拨:由题意知原来数据的平均数比新数据的平均数大40,所以为42.2答案:D3答案:B4答案:B5答案:A 点拨:这组数据的众数为3,中位数为3,平均数为4.6答案:B 点拨:甲班的方差比乙班的方差大,说明甲班的波动大.7答案:C 点拨:甲得分为90×50%+83×20%+95×30%=90.1.乙得分为98×50%+90×20%+95×30%=95.5.丙得分为80×50%+88×20%+90×30%=84.6.8答案:B 点拨:乙班的方差小.9答案:B 点拨:因为6个分数的平均数为(M+5M)÷6=M,所以M∶N=1.10答案: B 点拨:中位数是唯一确定的.11答案:7 812答案:2 点拨:由题意知(2+3+a+5+6)÷5=4,得a=4.故s2==2.13答案:65.75分 点拨:88×+72×+50×=65.75(分).14答案:2 415答案:20 12 点拨:平均数变为原来的2倍,方差变为原来的22=4倍.16解:(1)去年和今年6月上旬的平均气温分别是26.5 ℃,25.7 ℃.(2)去年和今年6月上旬平均气温的极差分别是:7 ℃,3 ℃,今年6月上旬气温比较稳定.17解:(1)平均数:260(件) 中位数:240(件) 众数:240(件)(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性.因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.18解:(1)相同点:两段台阶路台阶高度的平均数相同.不同点:两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)由于每个台阶高度均为15 cm(原平均数)时,可使得方差为0,因此应把每个台阶的高度统一修为15 cm高.树苗平均高度(单位:m)标准差甲苗圃1.80.2乙苗圃1.80.6丙苗圃2.00.6丁苗圃2.00.2班级参加人数中位数方差平均数甲55149191135乙55151110135纸笔测试实践能力成长记录甲908395乙989095丙808890每人加工零件数540450300240210120人数112632