第6章 数据的分析 北师大版数学八年级上册单元测试卷(含答案)
展开
这是一份第6章 数据的分析 北师大版数学八年级上册单元测试卷(含答案),共10页。
第六章 数据的分析时间:60分钟 满分:100分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意) 1.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数分别为6,10,5,3,4,8,4,这组数据的中位数是( )A.4 B.7 C.5 D.32.(2022·广东深圳龙华区期末)某运动品牌旗舰店统计了某款运动服11月份的销售情况,绘制成了如图所示的统计图,经过分析,该店店长决定12月份采购该款式更多的蓝色型号运动服,这一决定主要依据销售数据中的 ( )A.众数 B.方差 C.中位数 D.平均数3.(2022·山东济南莱芜区期末)某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x(单位:分)及方差s2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是 ( )A.甲 B.乙 C.丙 D.丁4.甲、乙、丙三种糖果售价分别为每千克10元、16元、18元,若将甲种糖果3 千克、乙种糖果5千克、丙种糖果2 千克混在一起,则售价应定为每千克 ( )A.14.2元 B.14.5元 C.14.6元 D.14.8元5.(2022·河北邯郸永年区期末)小明在计算一组数据的方差时,列出的算式如下:s2=16[2(7-x)2+3(8-x)2+(9-x)2],根据算式信息,这组数据的众数是 ( )A.3 B.6 C.7 D.86.(2022·四川成都成华区期末)为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如下表,则这些被调查学生睡眠时间的众数和中位数分别是 ( )A.9,8.5 B.9,9 C.10,9 D.11,8.57.(2022·江苏苏州工业园区期中)某篮球队5名场上队员的身高(单位:cm)是184,188,190,190,194.现用两名身高分别为185 cm和188 cm的队员换下场上身高为184 cm和190 cm的队员.与换人前相比,场上队员的身高 ( )A.平均数变小,众数变小B.平均数变小,众数变大C.平均数变大,众数变小D.平均数变大,众数变大8.为了解八(1)班学生的体温情况,小明对这个班所有学生测量了一次体温(单位:℃),并将测量结果绘制成统计表和如图所示的扇形统计图.下列说法错误的是 ( )A.这些体温的众数是36.5 ℃B.这些体温的中位数是36.35 ℃C.这个班有40人D.x=89.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表.其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据的唯一众数是13,平均数是12,那么这组数据的方差是 ( )A.107 B.97 C.87 D.110.(2022·山东曲阜期末)有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c为非零常数.下列说法:①两组样本数据的样本平均数相同;②两组样本数据的样本中位数相同;③两组样本数据的样本方差相同;④两组样本数据的样本极差相同.正确说法的序号是( )A.①② B.③④ C.②④ D.①③二、填空题(共5小题,每小题4分,共20分)11.甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是 .(填“甲”或“乙”) 12.(2022·辽宁沈阳期末改编)北京冬奥会的开幕式惊艳了世界,在这背后离不开志愿者们的默默奉献.某高校为积极响应号召,组织了志愿者选拔活动,并规定总成绩由面试、体能测试和专业技能三部分成绩组成,各部分所占比例如图所示.若某位志愿者的面试、体能测试和专业技能三项成绩得分依次为88分,80分,85分,则这位志愿者的总成绩是 分. 13.(2022·山东烟台期中)已知一组数据的方差s2=1n[(6-7)2+(10-7)2+(a-7)2+(b-7)2+(8-7)2](a,b为常数),则a+b的值为 . 14.(2021·山东枣庄台儿庄区期末)已知3,a,b,5与a,4,2b的平均数都是3,若将这两组数据合并为一组新数据,则这组新数据的众数为 . 15.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 . 三、解答题(共4小题,共50分)16.(11分)(2022·山东济南济阳区期末改编)甲、乙两名运动员参加射击训练,他们射击10次的成绩情况统计如下:根据以上信息,整理分析数据如下:(1)求出表格中a,b,c的值;(2)分别运用表中的三个统计量,简要分析这两名运动员的射击训练成绩,若选派其中一名参赛,你认为应选哪名运动员?17.(12分)(2022·山东寿光期末)青年歌手大奖赛的决赛在甲、乙两名歌手之间进行,9位评委的评分(10分为满分)情况如下表所示(单位:分).(1)分别求出甲、乙两名歌手得分的平均数(精确到0.01)、中位数和众数;(2)由(1)的结果,分析甲、乙两名歌手中谁的演唱水平较高;(3)如果以平均分为标准区分比赛的名次,那么制订怎样的计分规则比较合理?18.(13分)(2021·江苏南京期末)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中队和高中队进行复赛,两个队学生的复赛成绩如图所示.(1)根据图示填表:(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.19.(14分)(2021·重庆沙坪坝区期末)为贯彻《关于全面加强新时代大中小学劳动教育的意见》的方针政策,各学校都在深入开展劳动教育.某校为了解七、八年级学生一学期参加课外劳动时间(单位:时)的情况,从该校七、八年级中随机各抽查了20名学生进行问卷调查,并将调查结果进行整理、描述和分析(A:0≤t