搜索
    上传资料 赚现金
    英语朗读宝

    北师大版数学九上专题1.8 矩形的性质与判定(拓展篇)(专项练习)(含答案)

    北师大版数学九上专题1.8 矩形的性质与判定(拓展篇)(专项练习)(含答案)第1页
    北师大版数学九上专题1.8 矩形的性质与判定(拓展篇)(专项练习)(含答案)第2页
    北师大版数学九上专题1.8 矩形的性质与判定(拓展篇)(专项练习)(含答案)第3页
    还剩45页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级上册2 矩形的性质与判定随堂练习题

    展开

    这是一份数学九年级上册2 矩形的性质与判定随堂练习题,共48页。试卷主要包含了单选题,折叠中的矩形问题,旋转中的矩形问题,解答题等内容,欢迎下载使用。
    类型一、坐标系下的矩形问题
    1.如图,把矩形OABC放入平面直角坐标系中,点B的坐标为(10,8),点D是OC上一点,将△BCD沿BD折叠,点C恰好落在OA上的点E处,则点D的坐标是( )
    A.(0,4)B.(0,5)
    C.(0,3)D.(0,2)
    2.如图,在平面直角坐标系中,A,B两点的坐标分别是,,点C为线段的中点,则的长等于( )
    A.B.C.5D.10
    3.如图①,在矩形ABCD中,AB< AD,对角线AC、BD相交于点O,动点P从点A出发,沿A→B→C→D向点D运动.设点P的运动路程为x,ΔAOP的面积为y,y与x的函数关系图象如图②所示,则下列结论错误的是( )
    A.四边形ABCD的面积为12B.AD边的长为4
    C.当x=2.5时,△AOP是等边三角形D.ΔAOP的面积为3时,x的值为3或10
    4.如图,点A的坐标为(4,3),AB⊥x轴于点B,点C为坐标平面内一点,OC=2,点D为线段AC的中点,连接BD,则BD的最大值为( )
    A.3B.C.D.
    类型二、折叠中的矩形问题
    5.如图,把长方形纸片ABCD沿对角线所在直线折叠,设重叠部分为,那么下列说法错误的是( )
    A.是等腰三角形, B.折叠后和一定相等
    C.折叠后得到的图形是轴对称图形D.和一定是全等三角形
    6.如图,某数学兴趣小组开展以下折纸活动:①对折矩形纸片ABCD,使AD和BC重合,得到折痕EF,把纸片展开;②再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察探究可以得到∠NBC的度数是( )
    A.20°B.25°C.30°D.35°
    7.如图,四边形是矩形,点的坐标为,点C的坐标为,把矩形沿折叠,点落在点处,则点的纵坐标为( )
    A.-2B.-2.4C.-2D.-2
    8.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片可以进行如下操作:①把翻折,点B落在C边上的点E处,折痕为,点F在边上;②把翻折,点D落在边上的点G处,折痕为,点H在边上,若,则( )
    A.B.C.D.
    类型三 矩形背景下的最值问题
    9.如图,△ABC中,BC=4,D、E 分别是线段AB和线段BC上的动点,且BD=DE,F是线段AC上一点,且EF=FC,则DF的最小值为( )
    A.3B.2C.2.5D.4
    10.如图,ABC中,∠C=90°,AC=10,BC=8,线段DE的两个端点D、E分别在边AC,BC上滑动,且DE=6,若点M、N分别是DE、AB的中点,则MN的最小值为( )
    A.10﹣B.﹣3C.2﹣6D.3
    11.如图,在矩形ABCD中,AB=5,AD=3.动点P满足=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为( )
    A.B.C.D.
    12.如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③AB⊥CG;④BMG是等边三角形;⑤点P为线段BM上一动点,点H是BN的中点,则PN+PH的最小值是.其中正确结论有( )
    A.5个B.4个C.3个D.2个
    类型四、旋转中的矩形问题
    13.如图,矩形的顶点,,,将矩形以原点为旋转中心,顺时针旋转75°之后点的坐标为( )
    A.B.C.D.
    14.如图,将斜边为4,且一个角为30°的直角三角形AOB放在直角坐标系中,两条直角边分别与坐标轴重合,D为斜边的中点,现将三角形AOB绕O点顺时针旋转120°得到三角形EOC,则点D对应的点的坐标为( )
    A.(1,﹣)B.(,1)C.(2,﹣2)D.(2,﹣2)
    15.如图,矩形ABCD中,AD=2,AB=,对角线AC上有一点G(异于A,C),连接 DG,将△AGD绕点A 逆时针旋转60°得到△AEF,则BF的长为( )
    A.B.2C.D.2
    16.如图,矩形的顶点,点D为上一动点,将绕点O顺时针旋转得到,使得点A的对应点落在上,当的延长线恰好经过点C时,点D的坐标为( )
    A.B.C.D.
    二、填空题
    类型一、坐标系下的矩形问题
    17.如图,在平面直角坐标系中,点B的坐标为(3,3),过点B作BA⊥x轴于点A,BC⊥y轴于点C.若直线l: 把四边形OABC分成面积相等的两部分,则m的值为____.
    18.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(12,5),∠CAO的平分线与y轴相交于点D,则点D的坐标为 _____.
    19.如图,在平面直角坐标系中,矩形的顶点、的坐标分别为,,点是的中点,点在边上运动,点是坐标平面内的任意一点.若以,,,为顶点的四边形是边长为5的菱形时,则点的坐标为___________.
    20.如图,平面直角坐标系中,长方形,点,分别在轴,轴的正半轴上,,,,,分别交,于点,,且,则点坐标为______.
    类型二、折叠中的矩形问题
    21.如图,在长方形ABCD纸片中,AD∥BC,AB∥CD,把纸片沿EF折叠后,点C、D分别落在、的位置,若,则等于_________.
    22.如图,在矩形中,,,点为边上任意一点,将沿折叠,使点落在点处,连接,若是直角三角形,则线段的长为________.
    23.如图,矩形ABCD中,AB=3,AD=5.点E是BC边上一动点,连接AE.将△ABE沿AE翻折得到△AEF,连接DF.当△ADF的面积为时,线段BE的长为______.
    24.如图,在矩形ABCD中,E是BC边上的一点,连接AE,将沿AE翻折,点B的对应点为F.若线段AF的延长线经过矩形一边的中点,,则BE长为_________.
    类型三 矩形背景下的最值问题
    25.如图,在矩形中,,点是上一点,,是上一动点,、分别是,的中点,则的最小值为______.
    26.如图,在长方形中,已知,点是边上一动点(点不与重合),连接,作点关于直线的对称点,则线段的最小值为_________.
    27.如图,矩形中,,,动点、分别从点、同时出发,以相同的速度分别沿、向终点、移动,当点到达点时,运动停止,过点作直线的垂线,垂足为点,连接,则长的最小值为________.
    28.如图,在矩形ABCD中,AB=8,BC=12,E是AB的中点,F是BC边上一动点,将△BEF沿着EF翻折,使得点B落在点B′处,矩形内有一动点P,连接PB'、PC、PD,则PB′+PC+PD的最小值为 ___.
    类型四、旋转中的矩形问题
    29.如图,将矩形绕点逆时针旋转,连接,,当为______时.
    30.如图,在平面直角坐标系中,矩形的顶点A,C的坐标分别为,,将矩形绕点B顺时针旋转,点A,C,O的对应点分别为.当点落在x轴的正半轴上时,点的坐标为________.
    31.如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90°,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则_______.
    32.如图,在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形得到矩形,点,,的对应点分别为,,.记为矩形对角线的交点,则的最大面积为__.
    三、解答题
    33.在一次数学活动课中,林老师提出问题:“如图,已知矩形纸片ABCD,如何用折纸的方法把三等分?”
    通过各小组合作讨论,奋进组探究出解决此问题的方法为:先对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,然后把纸片展平;再次折叠纸片,使点A落在EF上的点N,得到折痕BM和线段BN,如图所示.则BM和BN三等分.
    请你对奋进组这种做法的合理性给出证明.
    34.材料阅读
    小明偶然发现线段AB的端点A的坐标为,端点B的坐标为,则线段AB中点的坐标为,通过进一步的探究发现在平面直角坐标系中,以任意两点、为端点的线段中点坐标为.
    (1)知识运用:
    如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为,则点M的坐标为 .
    (2)能力拓展:
    在直角坐标系中,有,,三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.
    35.请阅读下列材料:问题:如图1,点A,B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小.小军的思路是:如图2,作点A关于直线l的对称点,连接,则与直线l的交点P即为所求.请你参考小军同学的思路,探究并解决下列问题:
    (1)如图3,在图2的基础上,设与直线l的交点为C,过点B作BD⊥l,垂足为D.若CP=1,PD=2,AC=1,写出AP+BP的值为 ;
    (2)如图3,若AC=1,BD=2,CD=6,写出此时AP+BP的最小值 ;
    (3)求出的最小值.
    参考答案
    1.C
    【分析】
    由题意可得AO=BC=10,AB=OC=8,DE=CD,BE=BC=10,在中,由勾股定理可求得,OE=4,设OD=x,则DE=CD=8-x,然后在中,由勾股定理即可求得OD=3,继而求得点D的坐标.
    解:∵点B的坐标为(10,8),
    ∴AO=BC=10,AB=OC=8,
    由折叠的性质,可得:DE=CD,BE=BC=10,
    在中,由勾股定理得:,
    ∴OE=AO-AE=10-6=4,
    设OD=x,则DE=CD=8-x,
    在中,由勾股定理得:,
    即:,
    解得:,
    ∴OD=3,
    ∴点D的坐标是(0,3).
    故选:C.
    【点拨】本题主要考查了矩形的性质、折叠的性质、勾股定理,熟练掌握折叠的性质是解题的关键.
    2.C
    【分析】
    根据勾股定理求出斜边AB的长度,再由直角三角形斜边中线定理,即可得出答案.
    解:∵A,B两点的坐标分别是(8,0),(0,6),
    ∴OA=8,OB=6,
    ∴AB==10,
    ∵点C为AB的中点,
    ∴OC=AB=×10=5,
    故选:C.
    【点拨】本题主要考查坐标与图形的性质,勾股定理,直角三角形斜边中线定理,掌握直角三角形斜边中线定理是解题的关键.
    3.C
    【分析】
    过点P作PE⊥AC于点E,根据ΔAOP的边OA是一个定值,OA边上的高PE最大时是点P分别与点B和点D重合,因此根据这个规律可以对各个选项作出判断.
    解:A、过点P作PE⊥AC于点E,当点P在AB和BC边上运动时,PE逐渐增大,到点B时最大,然后又逐渐减小,到点C时为0,而y=中,OA为定值,所以y是先增大后减小,在B点时面积最大,在C点时面积最小; 观察图②知,当点P与点B重合时,ΔAOP的的面积为3,此时矩形的面积为:4×3=12,故选项A正确;
    B、观察图②知,当运动路程为7时,y的值为0,此时点P与点C重合,所以有AB+BC=7,
    又AB∙BC=12,解得:AB=3,BC=4,或AB=4,BC=3,但AB

    相关试卷

    北师大版(2024)3 正方形的性质与判定当堂检测题:

    这是一份北师大版(2024)3 正方形的性质与判定当堂检测题,共61页。试卷主要包含了单选题,正方形重叠部分面积问题,正方形最值问题,平直直角坐标系中的正方形问题,正方形的旋转问题等内容,欢迎下载使用。

    九年级上册2 矩形的性质与判定测试题:

    这是一份九年级上册2 矩形的性质与判定测试题,共46页。试卷主要包含了单选题,利用矩形的性质和判定证明,添加一个条件构成矩形,证明四边形是矩形,利用矩形的性质与判定求线段,解答题等内容,欢迎下载使用。

    数学九年级上册2 矩形的性质与判定随堂练习题:

    这是一份数学九年级上册2 矩形的性质与判定随堂练习题,共38页。试卷主要包含了单选题,利用矩形的性质和判定证明,添加一个条件构成矩形,证明四边形是矩形,利用矩形的性质与判定求线段,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map